Saratoga Underground Water Conservation District Groundwater Management Plan – 2019

I. Introduction

This plan becomes effective upon approval by the Texas Water Development Board (TWDB) and will remain in effect until October 1, 2024, or a period of five years whichever is later. The plan may be revised at any time, or after five years when the plan will be reviewed to ensure that it is consistent with the applicable Regional Water Plans and the State Water Plan.

District Mission

The Saratoga Underground Water Conservation District (District) Management Plan strives to protect and maintain the quantity and quality of useable groundwater in Lampasas County.

Statement of Guiding Principles

The Saratoga Underground Water Conservation District is created and organized under the terms and provisions of Article XVI, Section 59, of the Constitution of Texas and Chapter 36 (formerly Chapters 50 & 52) of the Texas Water Code, Vernon's Texas Civil Statutes, and the District's actions are authorized by, and consistent with this constitutional and statutory provision, including all amendments and additions. The Act under which the Saratoga Underground Water Conservation District is created prevails over any provision of general law that is in conflict or inconsistent with this Act. The District was created for the purpose to protect and maintain the quantity of useable quality water by conserving, preserving, recharging, and protecting and preventing waste and as far as practicable to minimize the drawdown of the water table and the reduction of artesian pressure of the Trinity and other aguifers within the District boundaries. In order to carry out its constitutional and statutory purposes, the District has all the powers authorized by Article XVI, Section 59, of the Texas Constitution, and Chapter 36 of the Texas Water Code, Vernon's Texas Civil Statutes, together with all amendments and additions.

The District's purposes and powers are implemented through promulgation and enforcement of the District's regulations. These regulations are adopted and revised under the authority of Subchapter E, Chapter 36, Texas Water Code, and are incorporated herein as a part of the District's management plan.

The District is governed by a board of five directors composed of a member from each of the county's precincts and an at-large member from Lampasas County, Texas. The chairman of the board of directors is elected by the board after each general election. The District is also served with up to six

ex-officio directors; one from each commissioner precinct in the County; at least one at-large member; and at least one advisory member.

<u>History</u>

The need for a local underground water conservation district to properly manage water from the Trinity and other aquifers in Central Texas was first identified in the late 1980's. At the request of many concerned area citizens, our local State Representative and State Senator were contacted by our County Judge, with the approval of the Lampasas County Commissioners' Court, with an approach to create and enact an Act to form a water district. During Regular Session of the 71st Legislature, H.B. No. 3122 passed unanimously both in the House and the Senate in May,1989. Be it enacted by the Legislature of the State of Texas on June 14, 1989 with a confirmation election to be held and approved by the registered voters of Lampasas County, Texas. Such election was held in November 1989 and approved by a majority of the voters thereby officially establishing the Saratoga Underground Water Conservation District effective January 1, 1990.

The leadership of the District transferred from the Commissioners Court and the County Judge to an appointed Board of Directors in September 2005 with the passage of HB 3539 enacted on September 1, 2005. The new board members continue to represent the four precincts of Lampasas County with an at-large member making up the fifth board membership. The General election of 2006 confirmed three of the new directors with four-year terms of office. The remaining two members were elected during the 2008 general election thereby composing the Board of all elected officials.

Location and Extent

The Saratoga Underground Water Conservation District is located in Central Texas. The District comprises an area of 714 square miles or 456,960 acres, all located within the boundary of Lampasas County, Texas. Principal municipalities and communities in our District include Lampasas, Lometa, Kempner, Adamsville, Izoro, Moline, and a part of Copperas Cove, with the city of Lampasas being the County Seat. County population in 2013 was 20,222 according to the US Census Bureau.

Topography

The District is within the Brazos River Basin and the Colorado River Basin. The County/District line between San Saba and Lampasas Counties is the Colorado River. The Lampasas River, as well as numerous creeks dissects the District. Sulphur Creek is the major creek in the District and its main source of water is from springs. The District's altitude ranges from 800 to 1700 feet, and drainage is typically from west to east.

II. Groundwater Resources

The Saratoga Underground Water Conservation District lies in several aquifers, with the Trinity Aquifer being the primary source of groundwater of interest in our area. Water from this aquifer is used for irrigation, public water supply, industrial, livestock, and domestic needs of the people and entities served. The Trinity Aquifer is comprised of several subunits, or layers, in Lampasas County including the Glen Rose, Travis Peak, Hensell, and Hosston formations.

Other minor aquifers include, but are not limited to, the Ellenburger-San Saba, Marble Falls, and Hickory formations within the District boundaries that meet the limited needs of individuals.

Detailed information regarding the underlying geology and aquifers located within the District boundaries can be found in TWDB Report 380 - "Aquifers of Texas" published by the TWDB and available for download at the following website:

https://www.twdb.texas.gov/publications/reports/numbered_reports/index.asp

III. Technical District Information Required By Texas Administrative Code

The following information has been provided by the TWDB and included as an Appendix which supports specific management plan requirements outlined in Title 31, Texas Administrative Code, Chapter 356 and the Texas Water Code Chapter 36.

- Groundwater Availability Model Run 19-005 in support of the Saratoga Underground Water Conservation District Groundwater Management Plan – Appendix A
- 2. Estimate of Modeled Available Groundwater in the District based on GAM Run 17-029 MAG for the January 2017 Desired Future Conditions adopted by Groundwater Management Area 8 **Appendix B**
- 3. Total Estimated Recoverable Storage for Aquifers in Groundwater Management Area 8 (GAM TASK 13-031) **Appendix C**
- Estimated Historical Water Use and 2017 State Water Plan Datasets -Appendix D

A review of the 2017 State Water Plan Dataset (**Appendix D**) indicates that future water supply needs exist in Lampasas County for Kempner WSC (municipal), the City of Kempner (municipal), the City of Lampasas (municipal), irrigation, and mining water user groups. Future municipal drinking water supply needs in Lampasas County will most likely be met from surface water in the Brazos River Basin; however, future irrigation and mining needs will likely be met

from groundwater. In addition, a review of the current and 50-year projected groundwater pumped within the District is approximately 15% of the modeled available groundwater supply based on TWDB estimates (**Appendix A**).

IV. Management Goals, Objectives, and Performance Standards

Goal 1.0: Providing the Most Efficient Use of Groundwater

Management Objective 1.1

Each year, the District will collect and complete a review of the monitoring well water level data obtained from the TWDB monitoring wells located within the District boundary, in order to improve understanding of available and developed groundwater supplies in Lampasas County.

Performance Standard 1.1

Based on review of the monitoring well data obtained from TWDB, the District will coordinate with TWDB officials to assess the performance and necessity for modifications to the ongoing monitoring program on an annual basis. Recommendations or modifications, if any, will be noted in the District's annual activity report.

Management Objective 1.2

Each year, the District will regulate and account for groundwater withdrawal in Lampasas County.

Performance Standard 1.2

The District has rules in place which require reporting to Lampasas County of all new wells drilled to include production volume, water use, and location. The District Board of Directors will collect and complete a review of all new submitted well drillers' reports at each regularly scheduled Board meeting. To date, the District is not aware of any new wells drilled which exceed the production volume required for a non-exemption status in the District (greater than 25,000 gallons per day). The District will coordinate with Lampasas County officials and local well drillers to complete an assessment of the performance and necessity for modifications to the ongoing reporting program on an annual basis. Recommendations or modifications, if any, will be noted in the District's annual activity report.

Goal 2.0: Controlling and Preventing Waste of Groundwater

Management Objective 2.1

Each year, the District will encourage the sustainable use of groundwater for beneficial purposes within Lampasas County.

Performance Standard 2.1

The District has adopted rules and procedures to address transportation of groundwater outside the District boundaries, well construction standards and minimum spacing requirements, and the identification of critical groundwater depletion areas, The District Board of Directors will complete an assessment of the necessity for modifications or enhancements to the adopted rules at a regularly scheduled Board meeting on an annual basis. Recommendations or modifications, if any, will be noted in the District's annual activity report.

Goal 3.0: Addressing Conjunctive Surface Water Management Issues

Management Objective 3.1

Each year, the District will complete an assessment of the availability of surface water resources which may be used as an alternate to groundwater.

Performance Standard 3.1

The District will keep up to date and informed regarding the availability of additional surface water or groundwater resources within the District through ongoing and regular communication with TWDB representatives, local City and County officials, and regular attendance and participation in the Groundwater Management Area 8 planning meetings. The District Board of Directors will collect and complete a review ofall new submitted well drillers' reports at each regularly scheduled Board meeting. In the event that a new permit application is filed to drill a well or group of wells which will significantly increase the annual groundwater volume pumped from within the District boundary, an assessment of alternate surface water supplies available to the applicant will be an inherent part of the District's review process. Findings and outcomes will be noted in the District's annual activity report.

Goal 4.0: Addressing Natural Resource Issues

Management Objective 4.1

Each year, the District will complete an assessment of all new oil and gas or commercial related groundwater well drillers' reports for potential contamination and/or pollution of the aquifers from other natural resources being produced within the District.

Performance Standard 4.1:

The District has the ability to monitor new oil and gas or commercial related groundwater well drilling operations via the ongoing well reporting requirements for potential contamination issues or concerns. The District Board of Directors will collect and complete a review of all new submitted well drillers' reports at each regularly scheduled Board meeting. In the event that a potential contamination issue is identified, the District Board

of Directors will make an assessment of the legal and regulatory options to minimize the concern for pollution of existing groundwater resources. An overview of the assessment and findings will be included the District's annual activity report.

Goal 5.0: Addressing Drought Conditions

Management Objective 5.1

The District will monitor drought conditions quarterly throughout the year. Useful drought information can be found on the following website: https://www.waterdatafortexas.org/drought.

Performance Standard 5.1

At each regularly scheduled Board meeting during drought conditions, the District Board of Directors will complete a review of available drought severity indices and implement well monitoring and/or management strategies as deemed necessary and appropriate for the existing groundwater users within the District. Well monitoring and/or management strategies implemented will be included in the District's annual activity report.

Goal 6.0: Addressing Conservation, Recharge Enhancement, Brush Control, and Rainwater Harvesting

Management Objective 6.1

Each year, the District will provide public educational material to encourage conservation and more efficient use of groundwater, recharge enhancement practices to include brush control, and implementation of rainwater harvesting strategies.

Performance Standard 6.1

The District will distribute readily available educational material using the existing County website in order to facilitate the above-mentioned objectives. The District Board of Directors will conduct a review the posted educational material at a regularly scheduled Board meeting and provide updated material as available on an annual basis. A copy of the public educational material provided and posted on the County website will be included in the District's annual activity report.

Goal 7.0: Addressing the Desired Future Conditions of the District

Management Objective 7.1

The District will annually, in coordination with the ongoing TWDB well monitoring program, compare annual water level measurements with previous years to determine trends, specific declines or increases in the monitor wells of the Trinity Aquifer. Water level comparisons will be used to determine if a serious decline in

Trinity Aquifer water levels warrant further study or action by the District Board of Directors. If deemed necessary based on the annual review of the monitoring well data, the District will take appropriate action such as conduct public hearings to make citizens of the SUWCD aware of severe changes in groundwater levels and/or implement additional conservation strategies.

Performance Standard 7.1

The number of monitor wells measured as well as the number of comparison analysis reports submitted to the District Board of Directors annually, will be included in the District's annual activity report. If applicable, the number of public hearings conducted and/or conservation strategies implemented when severe water level changes occurred will be included in the District's annual activity report.

The District has determined that the following management goals are not applicable because they are either not cost effective or appropriate:

TWC Chapter 36.1071(a)(3): Controlling and Preventing Subsidence. The District has reviewed the following TWDB publication: "Identification of the Vulnerability of the Major and Minor Aquifers of Texas to Subsidence with Regard to Groundwater Pumping – TWDB Contract Number 1648302062". The TWDB publication indicates that the aquifers located in Lampasas County are identified as low to medium risk for subsidence. If indicators change over time, the District will monitor for subsidence.

TWC Chapter 36.1071(a)(7): Precipitation Enhancement. The District has determined that precipitation enhancement is not cost effective or appropriate for the management of groundwater resources in Lampasas County.

Methodology for Tracking Progress

The Chairman of the Board of Directors will give an activity report to the District Board of Directors at the annual meeting in November to ensure management objectives and goals are being followed and achieved by the District. The Board will also elect its officers at that meeting. The Board will maintain the annual activity report on file for public inspection at the Lampasas County office upon adoption.

Management of Groundwater Supplies

The District will manage the supply of groundwater within the District in order to conserve the resource while maintaining the viability of all resource user groups, public and private. As deemed necessary, the District will identify and engage in activities and practices that, if implemented, would result in reduction of groundwater use. The District may require reduction of groundwater withdrawals to amounts that will not cause harm to the aquifers. The District may, at the Board's discretion, amend or revoke any permits after notice and hearing to achieve this purpose. The District will consider the public benefit

against individual hardship in determining permit denial or limiting groundwater withdrawals after considering all appropriate testimony. The District shall treat all citizens with equality. A public or private user may appeal to the Board for discretion in enforcement of the provisions of the District's rules and regulations on grounds of adverse economic hardship or unique local conditions. The exercise of said discretion by the Board shall not be construed as limiting the power of the Board.

<u>Actions, Procedures, Performance, and Avoidance for Plan</u> <u>Implementation</u>

The District will implement and use the provisions of this plan as a guidepost for determining the direction or priority for all District activities. All operations of the District, all agreements entered into by the District, and any additional planning efforts that the District may participate in will be consistent with the provisions of this plan. The District will seek cooperation in the implementation of this plan and the management of groundwater supplies within the District. All activities of the Saratoga Underground Water Conservation District will be undertaken in cooperation and coordination with the appropriate state, regional or local water entity.

The District has adopted rules relating to the permitting of wells and production of groundwater. All rules will be adhered to and enforced. The promulgation and enforcement of the rules will be based on the best technical advice available.

The District rules may be viewed on the District website: http://www.co.lampasas.tx.us/page/lampasas.Saratoga

Appendix A

Groundwater Availability Model Run 19-005

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan

Jerry Shi, Ph.D., P.G.
Texas Water Development Board
Groundwater Division
Groundwater Availability Modeling Department
512-463-5076
March 15, 2019

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan

Jerry Shi, Ph.D., P.G.
Texas Water Development Board
Groundwater Division
Groundwater Availability Modeling Department
512-463-5076
March 15, 2019

EXECUTIVE SUMMARY:

Texas Water Code, Section 36.1071(h) (Texas Water Code, 2011), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the Executive Administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the Executive Administrator.

The TWDB provides data and information to the Saratoga Underground Water Conservation District in two parts. Part 1 is the Estimated Historical Water Use/State Water Plan dataset report, which will be provided to you separately by the TWDB Groundwater Technical Assistance Department. Please direct questions about the water data report to Mr. Stephen Allen at 512-463-7317 or stephen.allen@twdb.texas.gov. Part 2 is the required groundwater availability modeling information and this information includes:

- 1. the annual amount of recharge from precipitation, if any, to the groundwater resources within the district;
- 2. for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface-water bodies, including lakes, streams, and rivers; and
- 3. the annual volume of flow into and out of the district within each aquifer and between aguifers in the district.

The groundwater management plan for the Saratoga Underground Water Conservation District should be adopted by the district on or before July 18, 2019 and submitted to the Executive Administrator of the TWDB on or before August 18, 2019. The current

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 4 of 16

management plan for the Saratoga Underground Water Conservation District expires on October 16, 2019.

This report replaces the results of GAM Run 13-019 (Seiter-Weatherford, 2013). GAM Run 19-005 includes results from the updated groundwater availability model for the northern portion of the Trinity and Woodbine aquifers (Kelley and others, 2014) and the new groundwater availability model for the Llano Uplift minor aquifers (Shi and others, 2016). Tables 1, 2, 3, and 4 summarize the groundwater availability model data for the Trinity Aquifer, the Marble Falls Aquifer, the Ellenburger-San Saba Aquifer, and the Hickory Aquifer required by statute. Figures 1, 2, 3, and 4 show the area of the models from which the values in the tables were extracted. If, after review of the figures, the Saratoga Underground Water Conservation District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the TWDB at your earliest convenience.

METHODS:

In accordance with the provisions of the Texas Water Code, Section 36.1071(h), the groundwater availability model for the northern portion of the Trinity and Woodbine aquifers and the groundwater availability model for the Llano Uplift minor aquifers were used to estimate information for the Saratoga Underground Water Conservation District management plan. Water budgets from the groundwater availability model for the northern portion of the Trinity and Woodbine aquifers were extracted for the historical period (1980 through 2012) using Zonebudget Version 3.01 (Harbaugh, 2009). The water budgets from the groundwater availability model for the Llano Uplift minor aquifers were extracted for the historical period (1981 through 2010) using ZONBUDUSG version 1.01 (Panday and others, 2013). The average annual water budget values for recharge, surfacewater outflow, inflow to the district, and outflow from the district for the aquifers within the district are summarized in this report.

PARAMETERS AND ASSUMPTIONS:

Trinity Aquifer

 We used version 2.01 of the groundwater availability model for the northern portion of the Trinity and Woodbine aquifers for this analysis. See Kelley and others (2014) for assumptions and limitations of the model.

- The model has eight layers which, in the area under the Saratoga Underground Water District, represent the Trinity Aquifer and younger units (Layers 1 through 3) and the Trinity Aquifer (Layers 4 through 8).
- Water budgets for the district were determined using the official aquifer boundaries from the associated model layers as described above.
- The model was run with MODFLOW-NWT (Niswonger and others, 2011).
- The groundwater discharge to surface water was calculated from the MODFLOW-NWT river and drain boundaries.

Marble Falls Aquifer, Ellenburger-San Saba Aquifer, and Hickory Aquifer

- We used version 1.01 of the groundwater availability model for the Llano Uplift minor aquifers for this analysis. See Shi and others (2016) for assumptions and limitations of the model.
- The model has eight layers which, in the area under the Saratoga Underground Water District, represent the Trinity Aquifer and younger units (Layer 1), confining units between the Trinity and Marble Falls (Layer 2), the Marble Falls Aquifer (Layer 3), confining units between Marble Falls and Ellenburger-San Saba (Layer 4), the Ellenburger-San Saba Aquifer (Layer 5), confining units between Ellenburger-San Saba and Hickory (Layer 6), the Hickory Aquifer (Layer 7), and the Precambrian (Layer 8).
- Water budgets for the district were determined using the official aquifer boundaries from the associated model layers as described above.
- The model was run with MODFLOW-USG Beta (Panday and others, 2013).
- The groundwater discharge to surface water was calculated from the MODFLOW-NWT river and drain boundaries.

RESULTS:

A groundwater budget summarizes the amount of water entering and leaving the aquifers according to the groundwater availability model. The groundwater budget components listed below and reported in Tables 1, 2, 3, and 4 were extracted from the groundwater availability model results for the northern portion of the Trinity and Woodbine aquifers

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 6 of 16

and for the Llano Uplift minor aquifers within Saratoga Underground Water Conservation District and averaged over the historical calibration periods.

- 1. Precipitation recharge—the areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.
- 2. Surface-water outflow—the total water discharging from the aquifer (outflow) to surface-water features such as streams, reservoirs, and springs.
- 3. Flow into and out of district—the lateral flow within the aquifer between the district and adjacent counties.
- 4. Flow between aquifers—the net vertical flow between the aquifer and adjacent aquifers or confining units. This flow is controlled by the relative water levels in each aquifer and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs.

Water budgets are estimates because of the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located.

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 7 of 16

TABLE 1. SUMMARIZED INFORMATION FOR THE TRINITY AQUIFER FOR SARATOGA UNDERGROUND WATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Trinity Aquifer	14,634
Estimated annual volume of water that discharges from the aquifer to springs and any surface-water body including lakes, streams, and rivers	Trinity Aquifer	32,519
Estimated annual volume of flow into the district within each aquifer in the district	Trinity Aquifer	7,764
Estimated annual volume of flow out of the district within each aquifer in the district	Trinity Aquifer	4,626
Estimated net annual volume of flow between each aquifer in the district	From younger units to Trinity Aquifer	4,662

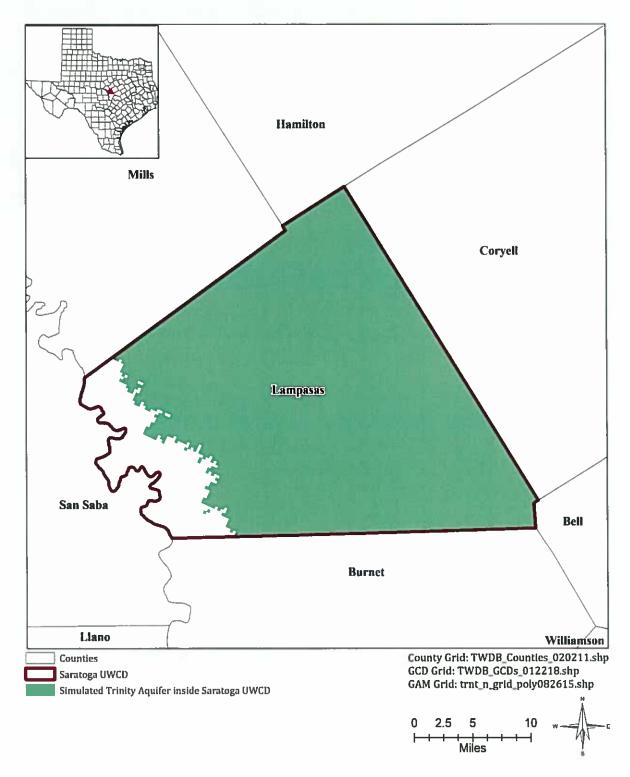


FIGURE 1. AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE TRINITY AQUIFER FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE TRINITY AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 9 of 16

TABLE 2. SUMMARIZED INFORMATION FOR THE MARBLE FALLS AQUIFER FOR SARATOGA UNDERGROUND WATER CONSERVATION DISTRICT 'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Marble Falls Aquifer	1,649
Estimated annual volume of water that discharges from the aquifer to springs and any surface-water body including lakes, streams, and rivers	Marble Falls Aquifer	6,769
Estimated annual volume of flow into the district within each aquifer in the district	Marble Falls Aquifer	1,799
Estimated annual volume of flow out of the district within each aquifer in the district	Marble Falls Aquifer	3,108
	From Marble Falls Aquifer to Marble Falls units	1,084
	From Marble Falls Aquifer to units between Trinity and Marble Falls	395
Estimated net annual volume of flow between each aquifer in the district	From Marble Falls Aquifer to Trinity Aquifer	35
	From units between Marble Falls and Ellenburger-San Saba to Marble Falls Aquifer	2,030
	From Marble Falls Aquifer to Ellenburger-San Saba Aquifer	87

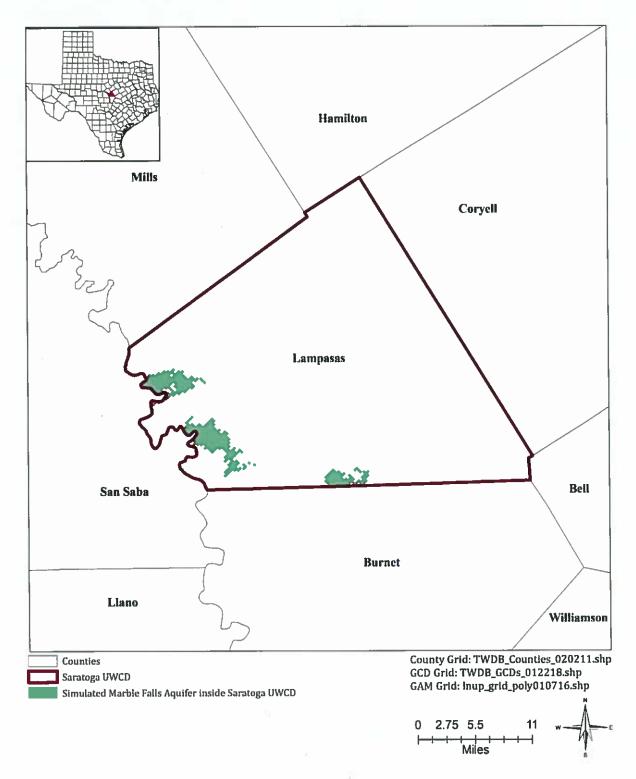


FIGURE 2. AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE MARBLE FALLS AQUIFER FROM WHICH THE INFORMATION IN TABLE 2 WAS EXTRACTED (THE MARBLE FALLS AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 11 of 16

TABLE 3. SUMMARIZED INFORMATION FOR THE ELLENBURGER-SAN SABA AQUIFER FOR SARATOGA UNDERGROUND WATER CONSERVATION DISTRICT 'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results	
Stimated annual amount of recharge from precipitation to the district	Ellenburger-San Saba Aquifer	4,689	
stimated annual volume of water that discharges om the aquifer to springs and any surface-water ody including lakes, streams, and rivers	Ellenburger-San Saba Aquifer	29,918	
stimated annual volume of flow into the district within each aquifer in the district	Ellenburger-San Saba Aquifer	13,291	
stimated annual volume of flow out of the district within each aquifer in the district	Ellenburger-San Saba Aquifer	9,572	
Estimated net annual volume of flow between each aquifer in the district	From Ellenburger-San Saba Aquifer to brackish portion	382	
	From Trinity Aquifer to Ellenburger-San Saba Aquifer	1	
	From Marble Falls Aquifer to Ellenburger-San Saba Aquifer	66	
	From Ellenburger-San Saba Aquifer to units between Trinity and Marble Falls	1	
	From Ellenburger-San Saba Aquifer to units between Marble Falls and Ellenburger- San Saba	1,712	
	From units between Ellenburger-San Saba and Hickory to Ellenburger-San Saba Aquifer	811	
	From Ellenburger-San Saba Aquifer to Hickory Aquifer	19	

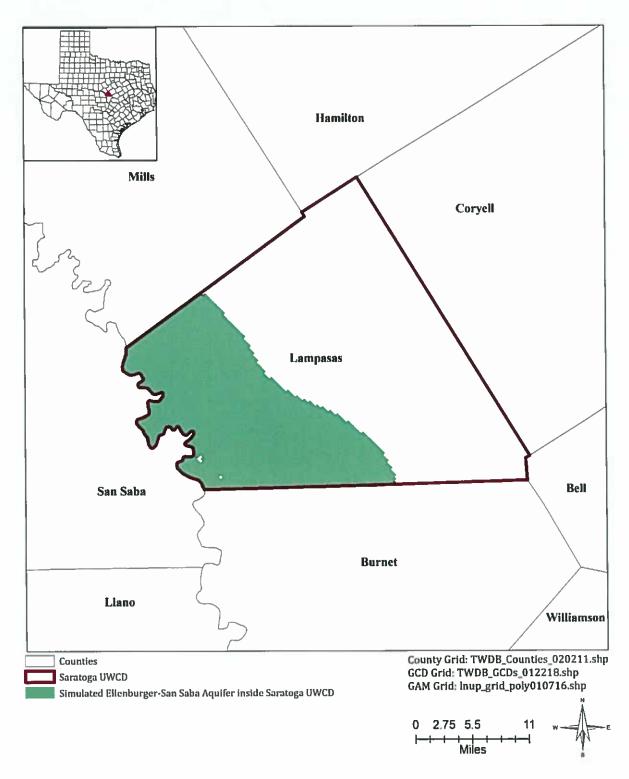


FIGURE 3. AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE ELLENBURGER-SAN SABA AQUIFER FROM WHICH THE INFORMATION IN TABLE 3 WAS EXTRACTED (THE ELLENBURGER-SAN SABA AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 13 of 16

TABLE 4. SUMMARIZED INFORMATION FOR THE HICKORY AQUIFER FOR SARATOGA UNDERGROUND WATER CONSERVATION DISTRICT 'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

Management Plan requirement	Aquifer or confining unit	Results	
Stimated annual amount of recharge from precipitation to the district	Hickory Aquifer	0	
Estimated annual volume of water that discharges from the aquifer to springs and any surface-water body including lakes, streams, and rivers	Hickory Aquifer	0	
Estimated annual volume of flow into the district within each aquifer in the district	Hickory Aquifer	3,791	
Estimated annual volume of flow out of the district within each aquifer in the district	Hickory Aquifer	2,285	
Estimated net annual volume of flow between each aquifer in the district	From Hickory Aquifer to brackish portion	705	
	From Ellenburger-San Saba Aquifer to Hickory Aquifer	28	
	From Hickory Aquifer to units between Ellenburger-San Saba and Hickory	954	
	From Precambrian Units to Hickory Aquifer	123	

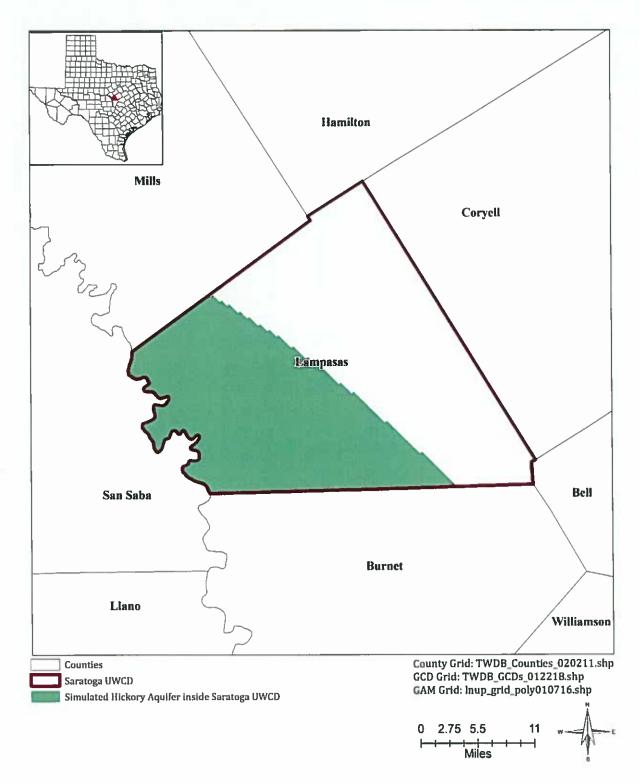


FIGURE 4. AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE HICKORY AQUIFER FROM WHICH THE INFORMATION IN TABLE 3 WAS EXTRACTED (THE HICKORY AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 19-005: Saratoga Underground Water Conservation District Groundwater Management Plan March 15, 2019 Page 15 of 16

LIMITATIONS:

The groundwater models used in completing this analysis are the best available scientific tools that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

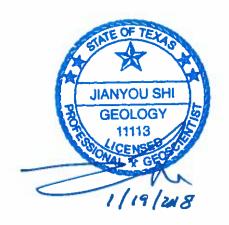
"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater models was designed to address regional-scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

REFERENCES:


- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models: U.S. Geological Survey Groundwater Software.
- Kelley, V.A., Ewing, J., Jones, T.L., Young, S.C., Deeds, N., and Hamlin, S., 2014, Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers Final Model Report, 990 p, https://www.twdb.texas.gov/groundwater/models/gam/trnt_n/Final_NTGAM_Vol_%201%20Aug%202014_Report.pdf?d=4732.6000000030035.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., http://www.nap.edu/catalog.php?record_id=11972.
- Niswonger, R. G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, A Newtonian formulation for MODFLOW-2005: U.S. Geological Survey Survey Techniques and Methods 6-A37, 44 p.
- Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., and Hughes, J.D., 2013, MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation: U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66 p.
- Seiter-Weatherford, C., 2013, GAM Run 13-019: Texas Water Development Board GAM Run 13-019 Report, 9 p., https://www.twdb.texas.gov/groundwater/docs/GAMruns/GR13-019.pdf.
- Shi, J., Boghici, R., Kohlrenken, W., and Hutchison, W.R., 2016, Numerical Model Report:
 Minor Aquifers of the Llano Uplift Region of Texas (Marble Falls, Ellenburger-San Saba, and Hickory). Texas Water Development Board, draft Report, 403p,
 https://www.twdb.texas.gov/groundwater/models/gam/llano/Llano Uplift Numerical Model Report Final.pdf?d=4411.900000006426.

Texas Water Code, 2011, https://statutes.capitol.texas.gov/docs/WA/pdf/WA.36.pdf.

Appendix B

Estimate of Modeled Available Groundwater in the District based on GAM Run 17-029 MAG for the January 2017 Desired Future Conditions adopted by Groundwater Management Area 8

Jerry Shi, Ph.D., P.G.
Texas Water Development Board
Groundwater Division
Groundwater Availability Modeling Department
(512) 463-5076
January 19, 2018

This page is intentionally left blank.

Jerry Shi, Ph.D., P.G.
Texas Water Development Board
Groundwater Division
Groundwater Availability Modeling Department
(512) 463-5076
January 19, 2018

EXECUTIVE SUMMARY:

The Texas Water Development Board (TWDB) has calculated the modeled available groundwater estimates for the Trinity, Woodbine, Edwards (Balcones Fault Zone), Marble Falls, Ellenburger-San Saba, and Hickory aquifers in Groundwater Management Area 8. The modeled available groundwater estimates are based on the desired future conditions for these aquifers adopted by groundwater conservation district representatives in Groundwater Management Area 8 on January 31, 2017. The district representatives declared the Nacatoch, Blossom, and Brazos River Alluvium aquifers to be non-relevant for purposes of joint planning. The TWDB determined that the explanatory report and other materials submitted by the district representatives were administratively complete on November 2, 2017.

The modeled available groundwater values for the following relevant aquifers in Groundwater Management Area 8 are summarized below:

 Trinity Aquifer (Paluxy) – The modeled available groundwater ranges from approximately 24,500 to 24,600 acre-feet per year between 2010 and 2070, and is January 19, 2018 Page 4 of 102

summarized by groundwater conservation districts and counties in <u>Table 1</u>, and by river basins, regional planning areas, and counties in <u>Table 13</u>.

- Trinity Aquifer (Glen Rose) The modeled available groundwater is approximately 12,700 acre-feet per year between 2010 and 2070, and is summarized by groundwater conservation districts and counties in <u>Table 2</u>, and by river basins, regional planning areas, and counties in <u>Table 14</u>.
- Trinity Aquifer (Twin Mountains) The modeled available groundwater ranges from approximately 40,800 to 40,900 acre-feet per year between 2010 and 2070, and is summarized by groundwater conservation districts and counties in <u>Table 3</u>, and by river basins, regional planning areas, and counties in <u>Table 15</u>.
- Trinity Aquifer (Travis Peak) The modeled available groundwater ranges from approximately 93,800 to 94,000 acre-feet per year between 2010 and 2070, and is summarized by groundwater conservation districts and counties in <u>Table 4</u>, and by river basins, regional planning areas, and counties in <u>Table 16</u>.
- Trinity Aquifer (Hensell) The modeled available groundwater is approximately 27,300 acre-feet per year from 2010 to 2070, and is summarized by groundwater conservation districts and counties in <u>Table 5</u>, and by river basins, regional planning areas, and counties in <u>Table 17</u>.
- Trinity Aquifer (Hosston) The modeled available groundwater ranges from approximately 64,900 to 65,100 acre-feet per year from 2010 to 2070, and is summarized by groundwater conservation districts and counties in <u>Table 6</u>, and by river basins, regional planning areas, and counties in <u>Table 18</u>.
- Trinity Aquifer (Antlers) The modeled available groundwater ranges from approximately 74,500 to 74,700 acre-feet per year between 2010 and 2070, and is summarized by groundwater conservation districts and counties in <u>Table 7</u>, and by river basins, regional planning areas, and counties in <u>Table 19</u>.
- Woodbine Aquifer The modeled available groundwater is approximately 30,600 acre-feet per year from 2010 to 2070, and is summarized by groundwater conservation districts and counties in <u>Table 8</u>, and by river basins, regional planning areas, and counties in <u>Table 20</u>.
- Edwards (Balcones Fault Zone) Aquifer The modeled available groundwater is 15,168 acre-feet per year from 2010 to 2060, and is summarized by groundwater conservation districts and counties in <u>Table 9</u>, and by river basins, regional planning areas, and counties in <u>Table 21</u>.

January 19, 2018 Page 5 of 102

- Marble Falls Aquifer The modeled available groundwater is approximately 5,600 acre-feet per year from 2010 to 2070, and is summarized by groundwater conservation districts and counties in <u>Table 10</u>, and by river basins, regional planning areas, and counties in <u>Table 22</u>.
- Ellenburger-San Saba Aquifer The modeled available groundwater is approximately 14,100 acre-feet per year between 2010 and 2070, and is summarized by groundwater conservation districts and counties in <u>Table 11</u>, and by river basins, regional planning areas, and counties in <u>Table 23</u>.
- Hickory Aquifer The modeled available groundwater is approximately 3,600 acrefeet per year from 2010 to 2070, and is summarized by groundwater conservation districts and counties in <u>Table 12</u>, and by river basins, regional planning areas, and counties in <u>Table 24</u>.

The modeled available groundwater values for the Trinity Aquifer (Paluxy, Glen Rose, Twin Mountains, Travis Peak, Hensell, Hosston, and Antlers subunits), Woodbine Aquifer, and Edwards (Balcones Fault Zone) Aquifer are based on the official aquifer boundaries defined by the TWDB. The modeled available groundwater values for the Marble Falls, Ellenburger-San Saba, and Hickory aquifers are based on the modeled extent, as clarified by Groundwater Management Area 8 on October 9, 2017.

The modeled available groundwater values estimated for counties may be slightly different from those estimated for groundwater conservation districts because of the process for rounding the values. The modeled available groundwater values for the longer leap years (2020, 2040, and 2060) are slightly higher than shorter non-leap years (2010, 2030, 2050, and 2070).

REQUESTOR:

Mr. Drew Satterwhite, General Manager of North Texas Groundwater Conservation District and Groundwater Management Area 8 Coordinator.

DESCRIPTION OF REQUEST:

In a letter dated February 17, 2017, Mr. Drew Satterwhite provided the TWDB with the desired future conditions of the Trinity (Paluxy), Trinity (Glen Rose), Trinity (Twin Mountains), Trinity (Travis Peak), Trinity (Hensell), Trinity (Hosston), Trinity (Antlers), Woodbine, Edwards (Balcones Fault Zone), Marble Falls, Ellenburger-San Saba, and Hickory aquifers. The desired future conditions were adopted as Resolution No. 2017-01 on January 31, 2017 by the groundwater conservation district representatives in

January 19, 2018 Page 6 of 102

Groundwater Management Area 8. The following sections present the adopted desired future conditions for these aquifers:

Trinity and Woodbine Aquifers

The desired future conditions for the Trinity and Woodbine aquifers are expressed as water level decline or drawdown in feet over the planning period 2010 to 2070 relative to the baseline year 2009, based on a predictive simulation by Beach and others (2016).

The county-based desired future conditions for the Trinity Aquifer subunits, excluding counties in the Upper Trinity Groundwater Conservation District, are listed below (dashes indicate areas where the subunits do not exist and therefore no desired future condition was proposed):

	Adopted Desired Future Condition (feet of drawdown below 2009 levels)								
County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antiers	
Bell	_	19	83	_	300	137	330	_	
Bosque	 	6	49	_	167	129	201	-	
Brown	-	_	2	_	1	1	1	2	
Burnet	_		2	_	16	7	20	_	
Callahan	_	_	_	_	_	_		1	
Collin	459	705	339	526	_	_	_	570	
Comanche	_		1	_	2	2	3	9	
Cooke	2		_		_		_	176	
Coryell	<u> </u>	7	14	_	99	66	130	_	
Dallas	123	324	263	463	348	332	351	_	
Delta	<u> </u>	264	181		186	<u> </u>	_	_	
Denton	22	552	349	716	_	<u> </u>	_	395	
Eastland	_	_		<u> </u>		_	-	3	
Ellis	61	107	194	333	301	263	310	_	
Erath	_	1	5	6	19	11	31	12	
Falls	_	144	215	_	462	271	465	_	
Fannin	247	688	280	372	269	_	_	251	
Grayson	160	922	337	417	_	-	_	348	
Hamilton	<u> </u>	2	4	_	24	13	35	_	
Hill	20	38	133	_	298	186	337	_	
Hunt	598	586	299	370	324	1 -	_	_	

January 19, 2018 Page 7 of 102

100	Adopted Desired Future Condition (feet of drawdown below 2009 levels)								
County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antiers	
Johnson	2	-61	58	156	179	126	235		
Kaufman	208	276	269	381	323	309	295	_	
Lamar	38	93	97	<u> </u>	114	_	_	122	
Lampasas		_	1	_	6	1	11	_	
Limestone	_	178	271	<u> </u>	392	183	404	_	
McLennan	6	35	133	_	471	220	542	_	
Milam	T -	_	212	_	345	229	345	_	
Mills		1	1	_	7	2	13	_	
Navarro	92	119	232	_	290	254	291	_	
Red River	2	21	36	_	51	_	_	13	
Rockwall	243	401	311	426	_	-	_	_	
Somervell	<u> </u>	1	4	31	51	26	83	_	
Tarrant	7	101	148	315	_	<u> </u>	_	148	
Taylor		_	_	_	_	_	_	0	
Travis	_	_	85	_	141	50	146	_	
Williamson		_	77	_	173	74	177		

The desired future conditions for the counties in the Upper Trinity Groundwater Conservation District are further divided into outcrop and downdip areas, and are listed below (dashes indicate areas where the subunits do not exist):

Upper Trinity GCD	Adopted Desired Future Conditions (feet of drawdown below 2009 levels)						
County (crop)	Antlers Paluxy		Glen Rose	Twin Mountains			
Hood (outcrop)	_	5	7	4			
Hood (downdip)	_	_	28	46			
Montague (outcrop)	18	_	_	_			
Montague (downdip)	_	_	_	_			
Parker (outcrop)	11	. 5	10	1			
Parker (downdip)	_	1	28	46			
Wise (outcrop)	34		_	_			
Wise (downdip)	142	_	_				

January 19, 2018 Page 8 of 102

Edwards (Balcones Fault Zone) Aquifer

The desired future conditions adopted by Groundwater Management Area 8 for the Edwards (Balcones Fault Zone) Aquifer are intended to maintain minimum stream and spring flows under the drought of record in Bell, Travis, and Williamson counties over the planning period 2010 to 2070. The desired future conditions are listed below:

County	Adopted Desired Future Condition
Bell	Maintain at least 100 acre-feet per month of stream/spring flow in Salado Creek during a repeat of the drought of record
Travis	Maintain at least 42 acre-feet per month of aggregated stream/spring flow during a repeat of the drought of record
Williamson	Maintain at least 60 acre-feet per month of aggregated stream/spring flow during a repeat of the drought of record

Marble Falls, Ellenburger-San Saba, and Hickory Aquifers

The desired future conditions for the Marble Falls, Ellenburger-San Saba, and Hickory aquifers in Brown, Burnet, Lampasas, and Mills counties are intended to maintain 90 percent of the aquifer saturated thickness over the planning period 2010 to 2070 relative to the baseline year 2009.

Supplemental Information from Groundwater Management Area 8

After review of the explanatory report and model files, the TWDB emailed a request for clarifications to Mr. Drew Satterwhite on August 7, 2017. On September 8, 2017, Mr. Satterwhite provided the TWDB with a technical memorandum from James Beach, Jeff Davis, and Brant Konetchy of LBG-Guyton Associates. On October 9, 2017, Mr. Satterwhite sent the TWDB two emails with additional information and clarifications. The information and clarifications are summarized below:

a. For the Trinity and Woodbine aquifers, an additional error tolerance defined as five feet of drawdown between the adopted desired future condition and the simulated drawdown is included with the original error tolerance of five percent. Thus, if the drawdown from the predictive simulation is within five feet or five percent from the desired future condition, then the predictive simulation is considered to meet the desired future condition.

Groundwater Management Area 8 provided a new MODFLOW-NWT well package, simulated head file, and simulated budget file on October 9, 2017. The TWDB determined that the distribution of pumping in the new model files was consistent with the explanatory report.

January 19, 2018 Page 9 of 102

The TWDB evaluates if the simulated drawdown from the predictive simulation meets the desired future condition by county. However, Groundwater Management Area 8 also provided desired future conditions based on groundwater conservation district and the whole groundwater management area.

- b. For the Edwards (Balcones Fault Zone) Aquifer in Bell, Travis, and Williamson counties, the coordinator for Groundwater Management Area 8 clarified that TWDB uses GAM Run 08-010 MAG by Anaya (2008) from the last cycle of desired future conditions with all associated assumptions including a baseline year of 2000.
- c. For the Marble Falls, Ellenburger-San Saba, and Hickory aquifers in Brown, Burnet, Lampasas, and Mills counties, Groundwater Management Area 8 adjusted the desired future condition from "maintain 90 percent of the saturated thickness" to "maintain at least 90 percent of the saturated thickness". Groundwater Management Area 8 also provided estimated pumping to use for the predictive simulation by TWDB.
- d. The Trinity, Woodbine, and Edwards (Balcones Fault Zone) aquifers are based on the official aquifer boundary while the Marble Falls, Ellenburger-San Saba, and Hickory aquifers include the portions both inside and outside the official aquifer boundaries (modeled extent).
- e. The sliver of the Edwards-Trinity (Plateau) Aquifer was declared to be non-relevant by Groundwater Management Area 8.

METHODS:

The desired future conditions for Groundwater Management Area 8 are based on multiple criteria. For the Trinity and Woodbine aquifers, the desired future conditions are defined as water-level declines or drawdowns over the course of the planning period 2010 through 2070 relative to the baseline year 2009. The desired future conditions for the Edwards (Balcones Fault Zone) Aquifer are based on stream and spring flows under the drought of record over the planning period 2010 to 2070. For the Marble Falls, Ellenburger-San Saba, and Hickory aquifers, the desired future conditions are to maintain aquifer saturated thickness between 2010 and 2070 relative to the baseline year 2009. The methods to calculate the desired future conditions are discussed below.

January 19, 2018 Page 10 of 102

Trinity and Woodbine Aquifers

The desired future conditions for the Trinity and Woodbine aquifers in Groundwater Management Area 8 are based on a predictive simulation by Beach and others (2016), which used the groundwater availability model for the northern portion of the Trinity and Woodbine aquifers (Kelley and others, 2014). The predictive simulation contained 61 annual stress periods corresponding to 2010 through 2070, with an initial head equal to 2009 of the calibrated groundwater availability model. The desired future conditions are the drawdowns between 2009 and 2070.

Because the baseline year 2009 for the desired future conditions falls within the calibration period 1890 to 2012 of the groundwater availability model, the water levels for the baseline year have been calibrated to observed data and, thus, they were directly used as the initial water level (head) condition of the predictive simulation.

The drawdowns between 2009 and 2070 are calculated from composite heads. <u>Appendix A</u> presents additional details on methods used to calculate composite head and associated average drawdown values for the Trinity and Woodbine aquifers.

Edwards (Balcones Fault Zone) Aquifer

Per Groundwater Management Area 8 (clarification dated September 1, 2017), the results from GAM Run 08-010 MAG by Anaya (2008) are used for the current round of joint planning. The following summarizes the approach used:

- Ran the model for 141 years, starting with a 100-year initial stress period (pre1980) followed by 21 years of historical monthly stress periods (1980 to 2000),
 then 10 years of predictive annual stress periods (2001 to 2010), and ending with
 10 years of predictive monthly stress periods (2011 to 2020) to represent a
 simulated repeat of the 1950s' drought of record.
- Used pumpage and recharge distributions provided to TWDB by the Groundwater Management Area 8 consultant.
- Adjusted pumpage in Williamson County to meet the desired future conditions.
- Extracted projected discharge for drain cells representing Salado Creek in Bell
 County and drain cells representing aggregated springs and streams in Williamson
 and Travis counties, respectively, for each of the stress periods from 2011 through
 2020 to verify that the desired future conditions were met.

January 19, 2018 Page 11 of 102

- Determined which stress period reflected the worst case monthly scenario for Salado Springs during a repeat of the 1950s' drought of record.
- Generated modeled available groundwater for all three desired future conditions based on the lowest monthly springflow volume for Salado Springs during a simulated repeat of the 1950s' drought of record.

Marble Falls, Ellenburger-San Saba, and Hickory Aquifers

The TWDB constructed a predictive simulation to analyze the desired future conditions for the Marble Falls, Ellenburger-San Saba, and Hickory aquifers in Brown, Burnet, Lampasas, and Mills counties within Groundwater Management Area 8. This simulation used the groundwater availability model for the minor aquifers in the Llano Uplift region by Shi and others (2016). The predictive simulation contains 61 annual stress periods corresponding to the planning period 2010 through 2070 with an initial head condition from 2009.

Because the baseline year 2009 for the desired future conditions falls within the model calibration period 1980 to 2010, and the water levels for the baseline year have been calibrated to observed data, the simulated head from 2009 of the calibrated groundwater availability model was directly used as the initial water level (head) condition of the predictive simulation.

Additional details on the predictive simulation and methods to estimate the drawdowns between 2009 and 2070 are described in Appendix B.

Modeled Available Groundwater

Once the predictive simulations met the desired future conditions, the modeled available groundwater values were extracted from the MODFLOW cell-by-cell budget files. Annual pumping rates were then divided by county, river basin, regional water planning area, and groundwater conservation district within Groundwater Management Area 8 (Figures 1 through 13 and Tables 1 through 24).

Modeled Available Groundwater and Permitting

As defined in Chapter 36 of the Texas Water Code, "modeled available groundwater" is the estimated average amount of water that may be produced annually to achieve a desired future condition. Groundwater conservation districts are required to consider modeled available groundwater, along with several other factors, when issuing permits in order to manage groundwater production to achieve the desired future condition(s). The other factors districts must consider include annual precipitation and production patterns, the

January 19, 2018 Page 12 of 102

estimated amount of pumping exempt from permitting, existing permits, and a reasonable estimate of actual groundwater production under existing permits.

PARAMETERS AND ASSUMPTIONS:

The parameters and assumptions for the groundwater availability simulations are described below:

Trinity and Woodbine Aquifers

- Version 2.01 of the updated groundwater availability model for the northern Trinity and Woodbine aquifers by Kelley and others (2014) was used to construct the predictive model simulation for this analysis (Beach and others, 2016).
- The predictive model was run with MODFLOW-NWT (Niswonger and others, 2011).
- The model has eight layers that represent units younger than the Woodbine Aquifer and the shallow outcrop of all aquifers (Layer 1), the Woodbine Aquifer (Layer 2), the Fredericksburg and Washita units (Layer 3), and various combinations of the subunits that comprise the Trinity Aquifer (Layers 4 to 8).
- Multiple model layers could represent an aquifer where it outcrops. For example, the Woodbine Aquifer could span Layers 1 to 2 and the Trinity Aquifer (Hosston) could contain Layers 1 through 8. The aquifer designation in model layers was defined in the model grid files produced by TWDB.
- The predictive model simulation contains 61 transient annual stress periods with an initial head equal to 2009 of the calibrated groundwater availability model.
- The predictive simulation had the same hydrogeological properties and hydraulic boundary conditions as the calibrated groundwater availability model except groundwater recharge and pumping.
- The groundwater recharge for the predictive model simulation was the same as stress period 1 of the calibrated groundwater availability model (steady state period) except stress periods representing 2058 through 2060, which contained lower recharge representing severe drought conditions.
- In the predictive simulation, additional pumping was added to certain counties and some pumping in Layer 1 was moved to lower layer(s) to avoid the automatic pumping reduction enacted by the MODFLOW-NWT code (Beach and others, 2016).

January 19, 2018 Page 13 of 102

- During the predictive simulation model run, some model cells went dry (<u>Appendix</u> <u>C</u>). Dry cells occur during a model run when the simulated water level in a cell falls below the bottom of the cell.
- Estimates of modeled drawdown and available groundwater from the model simulation were rounded to whole numbers.

Edwards (Balcones Fault Zone) Aquifer

- Version 1.01 of the groundwater availability model for the northern segment of the Edwards (Balcones Fault Zone) Aquifer (Jones, 2003) was used to construct the predictive model simulation for the analysis by Anaya (2008).
- The model has one layer that represents the Edwards (Balcones Fault Zone) Aquifer.
- The model was run with MODFLOW-96 (Harbaugh and McDonald, 1996).
- The predictive model simulation contains the calibrated groundwater availability model (253 monthly stress periods), stabilization (10 annual stress periods), and drought conditions (120 monthly stress periods).
- The boundary conditions for the stabilization and drought periods (except recharge and pumping) were the same in the predictive simulation as the last stress period (stress period 253) of the calibrated groundwater availability model.
- The groundwater recharge for the stabilization and drought periods and pumping information were from Groundwater Management Area 8 consultant.
- The groundwater pumping in Williamson County was adjusted as needed during the predictive model run simulation to match the desired future conditions.
- Estimates of modeled spring and stream flows from the model simulation were rounded to whole numbers.

Marble Falls, Ellenburger-San Saba, and Hickory Aquifers

- Version 1.01 of the groundwater availability model for the minor aquifers in Llano
 Uplift region by Shi and others (2016) was used to develop the predictive model
 simulation used for this analysis.
- The model has eight layers: Layer 1 (the Trinity Aquifer, Edwards-Trinity (Plateau) Aquifer, and younger alluvium deposits), Layer 2 (confining units), Layer 3 (the Marble Falls Aquifer and equivalent unit), Layer 4 (confining units), Layer 5 (Ellenburger-San Saba Aquifer and equivalent unit), Layer 6 (confining units), Layer 7 (the Hickory Aquifer and equivalent unit), and Layer 8 (Precambrian units).

January 19, 2018 Page 14 of 102

- The model was run with MODFLOW-USG beta (development) version (Panday and others, 2013).
- The predictive model simulation contains 61 annual stress periods (2010 to 2070)
 with the initial head equal to 2009 of the calibrated groundwater availability model.
- The boundary conditions for the predictive model except recharge and pumping were the same in the predictive simulation of the last stress period of the calibrated groundwater availability model.
- The groundwater recharge for the predictive model simulation was set equal to the average of all stress periods (1982 to 2010) of the calibrated model except the first stress period.
- The groundwater pumping was initially set to the last stress period of the calibrated groundwater availability model. Additional pumping per county was then added to the model cells of the three aquifers based on the modeled extent to match the total pumping data for each aquifer provided by Groundwater Management area 8.
- During the predictive model run, some active model cells went dry (<u>Appendix D</u>).
 Dry cells occur during a model run when the simulated water level in a cell falls below the bottom of the cell.
- Estimates of modeled saturated aquifer thickness values were rounded to one decimal point.

RESULTS:

The modeled available groundwater for the Trinity Aquifer (Paluxy) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 24,499 acre-feet per year for the non-leap (shorter) years (2010, 2030, 2050, and 2070) to 24,565 acre-feet per year for the leap (longer) years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 1. Table 13 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Trinity Aquifer (Glen Rose) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 12,701 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 12,736 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in <u>Table 2</u>. <u>Table 14</u>

January 19, 2018 Page 15 of 102

summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Trinity Aquifer (Twin Mountains) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 40,827 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 40,939 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in <u>Table 3</u>. <u>Table 15</u> summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Trinity Aquifer (Travis Peak) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 93,757 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 94,016 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 16 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Trinity Aquifer (Hensell) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 27,257 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 27,331 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 17 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Trinity Aquifer (Hosston) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 64,922 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 65,098 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 18 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Trinity Aquifer (Antlers) that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 74,471 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 74,677 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is

January 19, 2018 Page 16 of 102

summarized by groundwater conservation district and county in <u>Table 7</u>. <u>Table 19</u> summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Woodbine Aquifer that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 30,554 acrefeet per year for the non-leap years (2010, 2030, 2050, and 2070) to 30,636 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 20 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Edwards (Balcones Fault Zone) Aquifer that achieves the desired future condition adopted by Groundwater Management Area 8 remains at 15,168 acre-feet per year from 2010 to 2060. The modeled available groundwater is summarized by groundwater conservation district and county in <u>Table 9</u>. <u>Table 21</u> summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Marble Falls Aquifer that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 5,623 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 5,639 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 10. Table 22 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Ellenburger-San Saba Aquifer that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 14,050 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 14,089 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is summarized by groundwater conservation district and county in Table 23 summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

The modeled available groundwater for the Hickory Aquifer that achieves the desired future condition adopted by Groundwater Management Area 8 ranges from 3,574 acre-feet per year for the non-leap years (2010, 2030, 2050, and 2070) to 3,585 acre-feet per year for the leap years (2020, 2040, and 2060). The modeled available groundwater is

January 19, 2018 Page 17 of 102

summarized by groundwater conservation district and county in <u>Table 12</u>. <u>Table 24</u> summarizes the modeled available groundwater by county, river basin, and regional water planning area for use in the regional water planning process.

January 19, 2018 Page 18 of 102

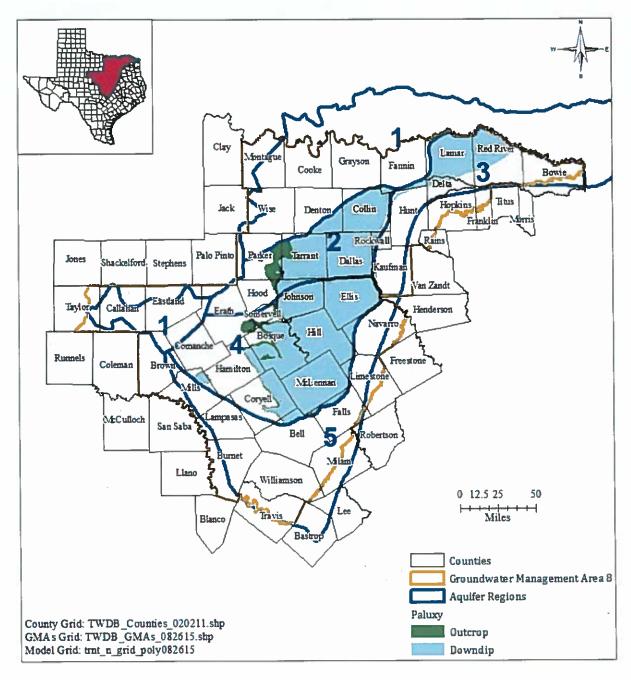


FIGURE 1. MAP SHOWING THE TRINITY AQUIFER (PALUXY) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 19 of 102

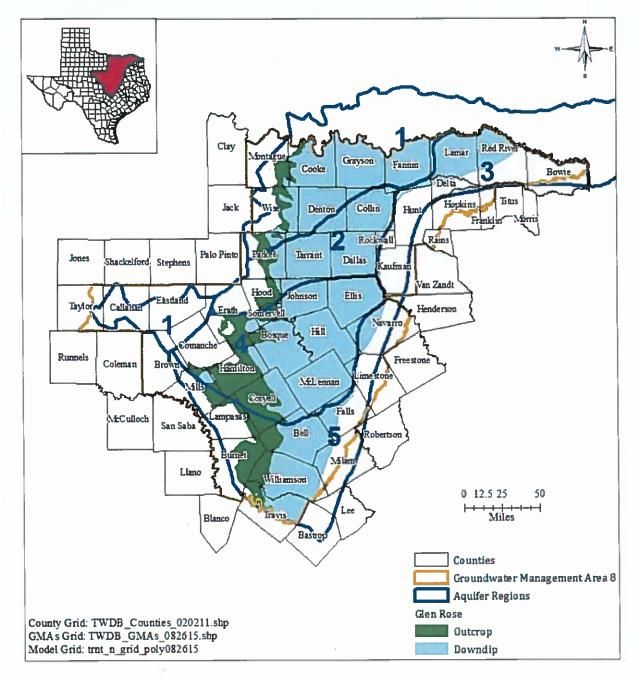


FIGURE 2. MAP SHOWING THE TRINITY AQUIFER (GLEN ROSE) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 20 of 102

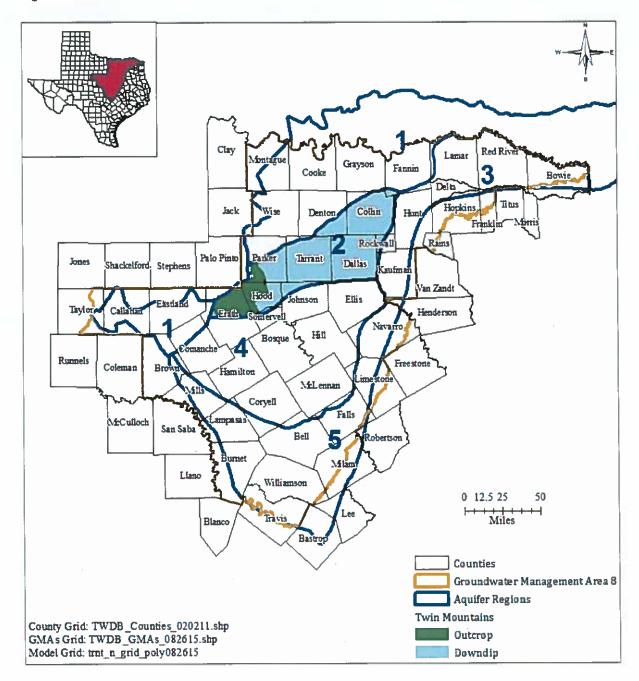


FIGURE 3. MAP SHOWING THE TRINITY AQUIFER (TWIN MOUNTAINS) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 21 of 102

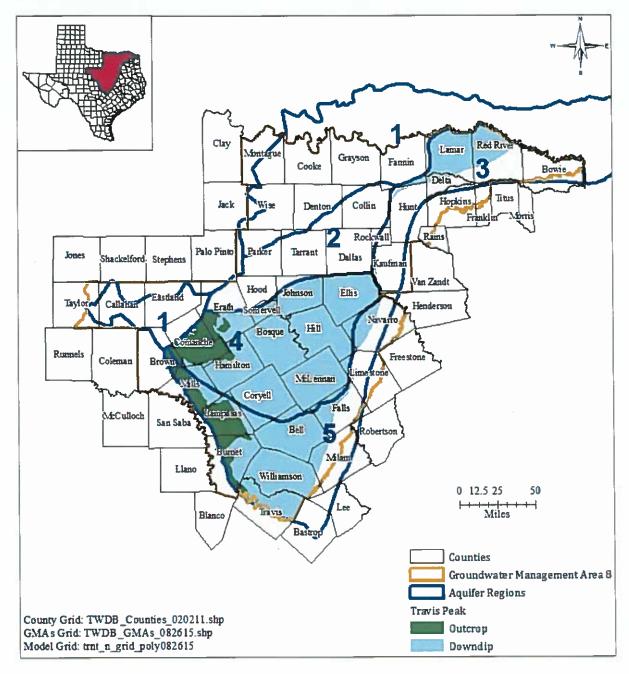


FIGURE 4. MAP SHOWING THE TRINITY AQUIFER (TRAVIS PEAK) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 22 of 102

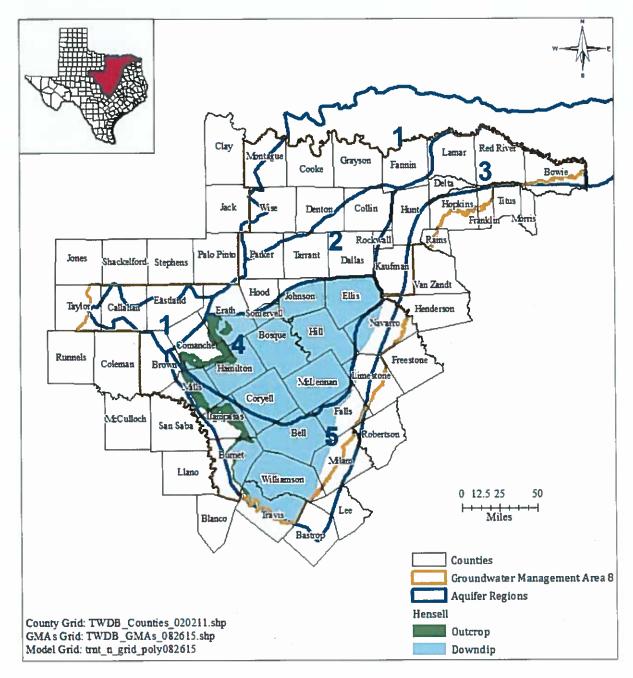


FIGURE 5. MAP SHOWING THE TRINITY AQUIFER (HENSELL) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 23 of 102

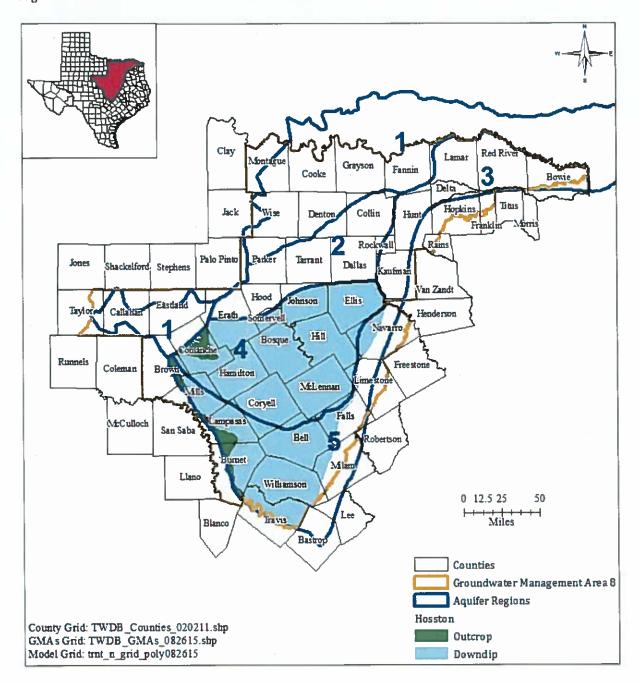


FIGURE 6. MAP SHOWING THE TRINITY AQUIFER (HOSSTON) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 24 of 102

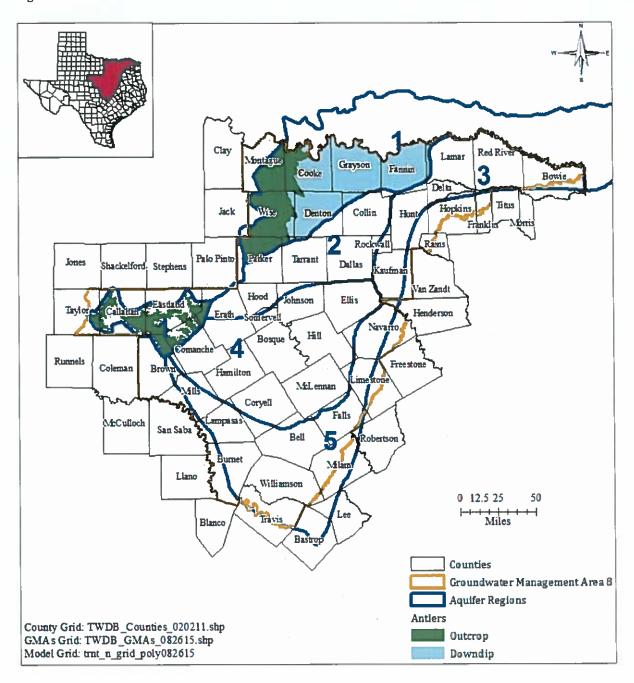


FIGURE 7. MAP SHOWING THE TRINITY AQUIFER (ANTLERS) WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 25 of 102

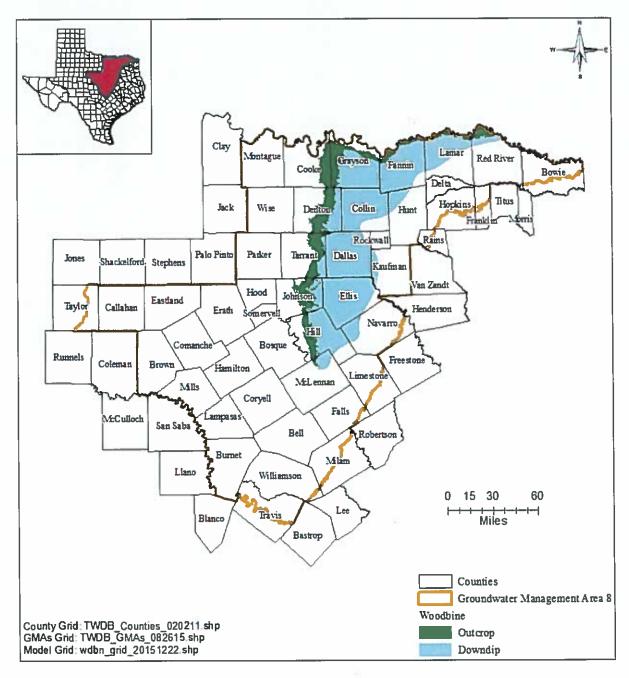


FIGURE 8. MAP SHOWING THE WOODBINE AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS.

January 19, 2018 Page 26 of 102

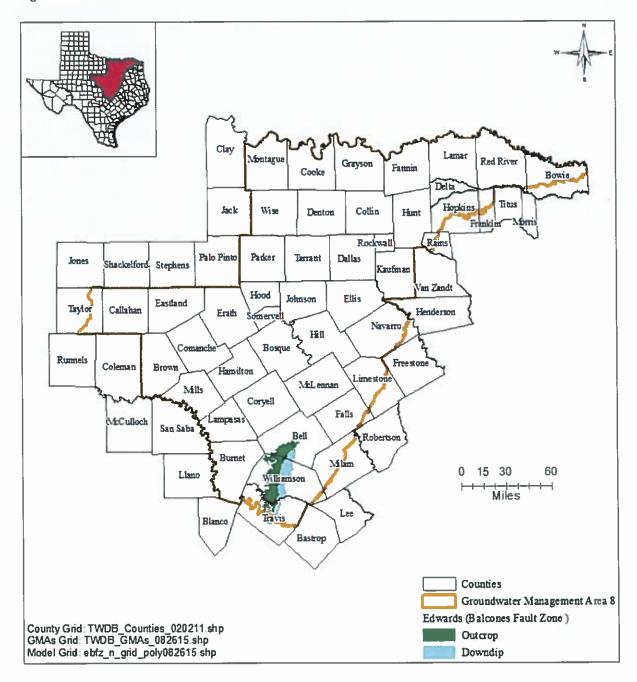


FIGURE 9. MAP SHOWING THE EDWARDS (BALCONES FAULT ZONE) AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN SEGMENT OF THE EDWARDS (BALCONES FAULT ZONE) AQUIFER.

January 19, 2018 Page 27 of 102

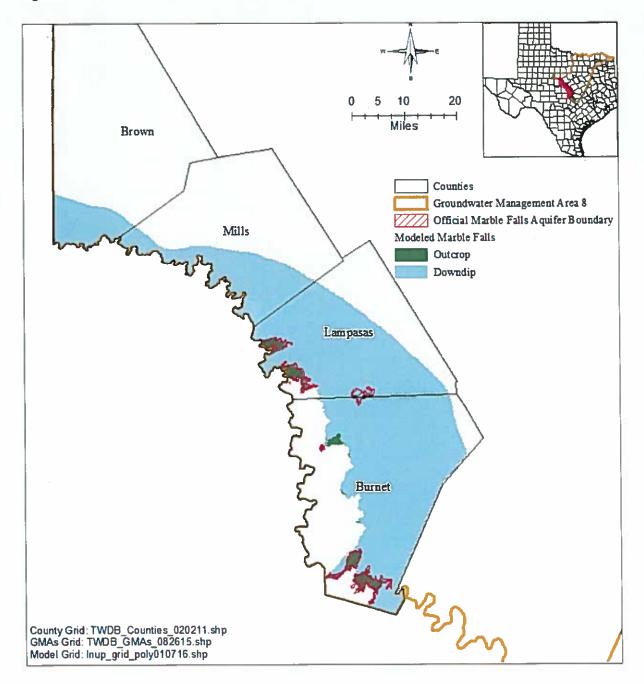


FIGURE 10. MAP SHOWING THE MARBLE FALLS AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE MINOR AQUIFERS IN LLANO UPLIFT REGION.

January 19, 2018 Page 28 of 102

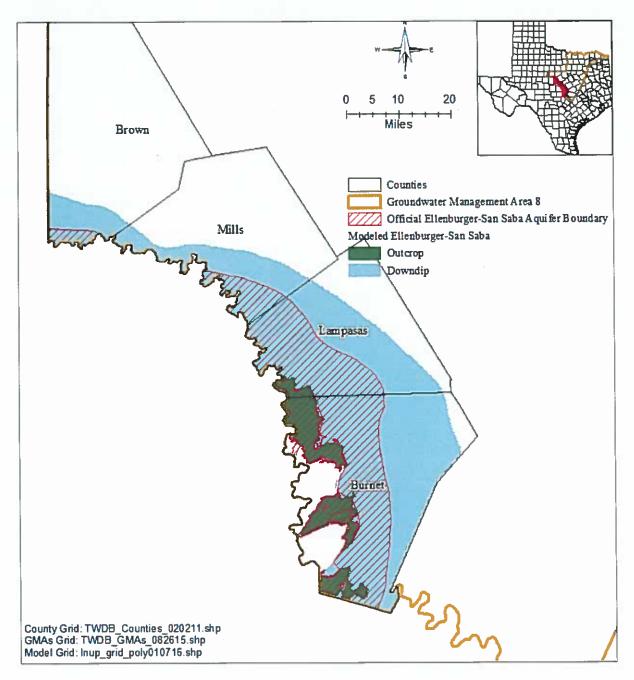


FIGURE 11. MAP SHOWING THE ELLENBURGER-SAN SABA AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE MINOR AQUIFERS IN LLANO UPLIFT REGION.

January 19, 2018 Page 29 of 102

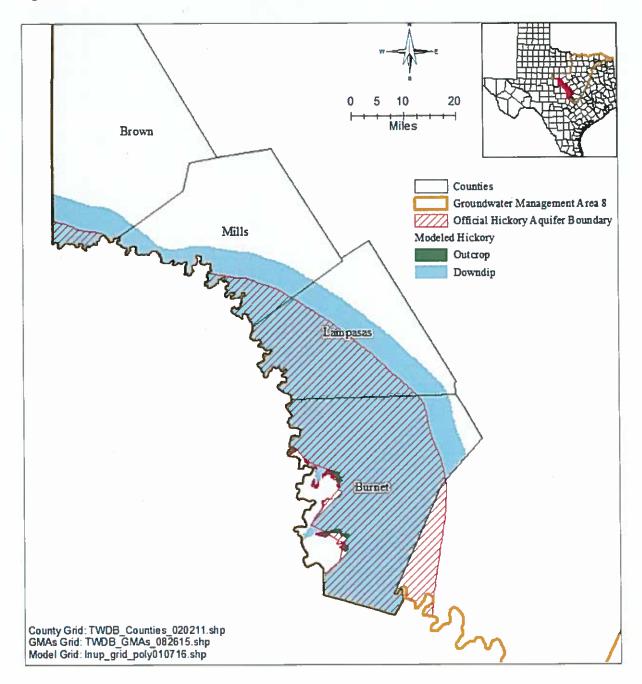


FIGURE 12. MAP SHOWING THE HICKORY AQUIFER WITHIN GROUNDWATER MANAGEMENT AREA 8 FROM THE GROUNDWATER AVAILABILITY MODEL FOR THE MINOR AQUIFERS IN LLANO UPLIFT REGION.

January 19, 2018 Page 30 of 102

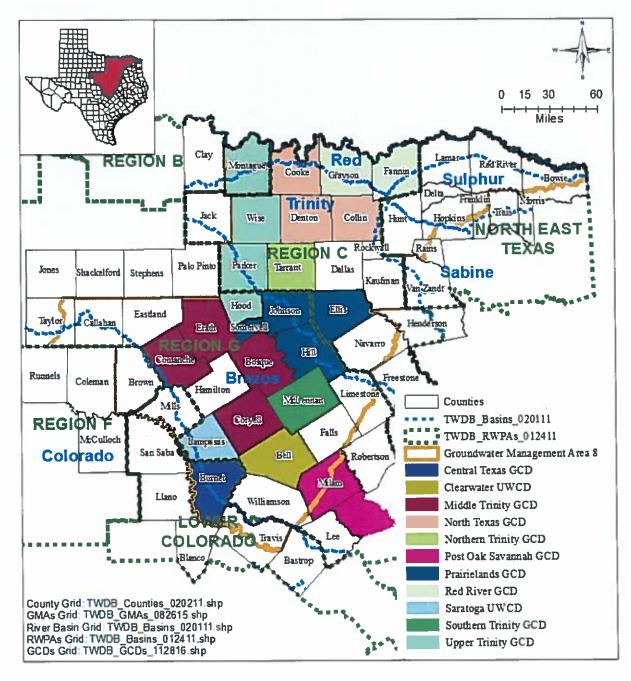


FIGURE 13. MAP SHOWING REGIONAL WATER PLANNING AREAS (RWPAS), GROUNDWATER CONSERVATION DISTRICTS (GCDS), AND RIVER BASINS ASSOCIATED WITH GROUNDWATER MANAGEMENT AREA 8.

January 19, 2018 Page 31 of 102

TABLE 1. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (PALUXY) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Clearwater UWCD	Bell	0	0	0	0	0	0	0	0
Middle Trinity GCD	Bosque	204	356	358	356	358	356	358	356
Middle Trinity GCD	Coryell	0	0	0	0	0	0	0	0
Middle Trinity GCD	Erath	38	61	61	61	61	61	61	61
Middle Trinity GCD Total		242	417	419	417	419	417	419	417
North Texas GCD	Collin	616	1,547	1,551	1,547	1,551	1,547	1,551	1,547
North Texas GCD	Denton	1,532	4,819	4,832	4,819	4,832	4,819	4,832	4,819
North Texas GCD Total		2,148	6,366	6,383	6,366	6,383	6,366	6,383	6,366
Northern Trinity GCD	Tarrant	11,285	8,957	8,982	8,957	8,982	8,957	8,982	8,957
Prairielands GCD	Ellis	510	442	443	442	443	442	443	442
Prairielands GCD	Hill	400	352	353	352	353	352	353	352
Prairielands GCD	Johnson	4,851	2,440	2,447	2,440	2,447	2,440	2,447	2,440
Prairielands GCD	Somervell	3	14	14	14	14	14	14	14
Prairielands GCD Total		5,764	3,248	3,257	3,248	3,257	3,248	3,257	3,248
Red River GCD	Fannin	389	2,087	2,092	2,087	2,092	2,087	2,092	2,087
Red River GCD	Grayson	0	0	0	0	0	0	0	0
Red River GCD Total		389	2,087	2,092	2,087	2,092	2,087	2,092	2,087
Southern Trinity GCD	McLennan	319	0	0	0	0	0	0	0
Upper Trinity GCD	Hood (outcrop)	106	159	159	159	159	159	159	159
Upper Trinity GCD	Parker (outcrop)	2,100	2,607	2,614	2,607	2,614	2,607	2,614	2,607
Upper Trinity GCD	Parker (downdip)	221	50	50	50	50	50	50	50
Upper Trinity GCD Total		2,427	2,816	2,823	2,816	2,823	2,816	2,823	2,816
No District	Dallas	231	358	3 59	358	359	358	359	358
No District	Delta	56	56	56	56	56	56	56	56
No District	Falls	0	0	0	0	0	0	0	0
No District	Hamilton	0	0	0	0	0	0	0	0
No District	Hunt	3	3	3	3	3	3	3	3
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Lamar	16	8	8	8	8	8	8	8

January 19, 2018 Page 32 of 102

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
No District	Limestone	0	0	0	0	0	0	0	0
No District	Mills	3	6	6	6	6	6	6	6
No District	Navarro	0	0	0	0	0	0	0	0
No District	Red River	190	177	177	177	177	177	177	177
No District	Rockwall	0	0	0	0	0	0	0	0
No District Total		499	608	609	608	609	608	609	608
Groundwater Management Area 8		23,073	24,499	24,565	24,499	24,565	24,499	24,565	24,499

January 19, 2018 Page 33 of 102

TABLE 2. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (GLEN ROSE) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	35	423	425	423	425	423	425	423
Clearwater UWCD	Bell	775	971	974	971	974	971	974	971
Middle Trinity GCD	Bosque	576	728	731	728	731	728	731	728
Middle Trinity GCD	Comanche	3	41	41	41	41	41	41	41
Middle Trinity GCD	Coryell	0	120	120	120	120	120	120	120
Middle Trinity GCD	Erath	263	1,078	1,081	1,078	1,081	1,078	1,081	1,078
Middle Trinity GCD Total		842	1,967	1,973	1,967	1,973	1,967	1,973	1,967
North Texas GCD	Collin	84	83	83	83	83	83	83	83
North Texas GCD	Denton	121	338	339	338	339	338	339	338
North Texas GCD Total		205	421	422	421	422	421	422	421
Northern Trinity GCD	Tarrant	1,070	793	795	793	795	793	795	793
Post Oak Savannah GCD	Milam	0	0	0	0	0	0	0	0
Prairielands GCD	Ellis	58	50	50	50	50	50	50	50
Prairielands GCD	Hill	116	115	115	115	115	115	115	115
Prairielands GCD	Johnson	1,780	1,632	1,636	1,632	1,636	1,632	1,636	1,632
Prairielands GCD	Somervell	81	146	146	146	146	146	146	146
Prairielands GCD Total		2,035	1,943	1,947	1,943	1,947	1,943	1,947	1,943
Red River GCD	Fannin	0	0	0	0	0	0	0	0
Red River GCD	Grayson	0	0	0	0	0	0	0	0
Red River GCD Total		0	0	0	0	0	0	0	0
Saratoga UWCD	Lampasas	65	68	68	68	68	68	68	68
Southern Trinity GCD	McLennan	845	0	0	0	0	0	0	0
Upper Trinity GCD	Hood (outcrop)	483	653	655	653	655	653	655	653
Upper Trinity GCD	Hood (downdip)	81	103	103	103	103	103	103	103
Upper Trinity GCD	Parker (outcrop)	2 ,593	2,289	2,295	2,289	2,295	2,289	2,295	2,289
Upper Trinity GCD	Parker (downdip)	1,063	873	876	873	876	873	876	873
Upper Trinity GCD Total	,	4,220	3,918	3,929	3,918	3,929	3,918	3,929	3,918

January 19, 2018 Page 34 of 102

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
No District	Brown	0	0	0	0	0	0	0	0
No District	Dallas	135	131	132	131	132	131	132	131
No District	Delta	0	0	0	0	0	0	0	0
No District	Falls	0	0	0	0	0	0	0	0
No District	Hamilton	168	218	218	218	218	218	218	218
No District	Hunt	0	0	0	0	0	0	0	0
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Lamar	0	0	0	0	0	0	0	0
No District	Limestone	0	0	0	0	0	0	0	0
No District	Mills	12	189	189	189	189	189	189	189
No District	Navarro	0	0	0	0	0	0	0	0
No District	Red River	0	0	0	0	0	0	0	0
No District	Rockwall	0	0	0	0	0	0	0	0
No District	Travis	898	971	974	971	974	971	974	971
No District	Williamson	695	688	690	688	690	688	690	688
No District Total		1,908	2,197	2,203	2,197	2,203	2,197	2,203	2,197
Groundwater Management Area 8		12,000	12,701	12,736	12,701	12,736	12,701	12,736	12,701

January 19, 2018 Page 35 of 102

TABLE 3. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (TWIN MOUNTAINS) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Middle Trinity GCD	Erath	3,443	5,017	5,031	5,017	5,031	5,017	5,031	5,017
North Texas GCD	Collin	163	2,201	2,207	2,201	2,207	2,201	2,207	2,201
North Texas GCD	Denton	997	8,366	8,389	8,366	8,389	8,366	8,389	8,366
North Texas GCD Total		1,160	10,567	10,596	10,567	10,596	10,567	10,596	10,567
Northern Trinity GCD	Tarrant	7,329	6,917	6,936	6,917	6,936	6,917	6,936	6,917
Prairielands GCD	Ellis	0	0	0	0	0	0	0	0
Prairielands GCD	Johnson	539	384	385	384	385	384	385	384
Prairielands GCD	Somervell	150	174	174	174	174	174	174	174
Prairielands GCD Total		689	558	559	558	559	558	559	558
Red River GCD	Fannin	0	0	0	0	0	0	0	0
Red River GCD	Grayson	0	0	0	0	0	0	0	0
Red River GCD Total		0	0	0	0	0	0	0	0
Upper Trinity GCD	Hood (outcrop)	3,379	3,662	3,672	3,662	3,672	3,662	3,672	3,662
Upper Trinity GCD	Hood (downdip)	7,143	7,759	7,780	7,759	7,780	7,759	7,780	7,759
Upper Trinity GCD	Parker (outcrop)	1,600	1,066	1,069	1,066	1,069	1,066	1,069	1,066
Upper Trinity GCD	Parker (downdip)	3,459	2,082	2,088	2,082	2,088	2,082	2,088	2,082
Upper Trinity GCD Total		15,581	14,569	14,609	14,569	14,609	14,569	14,609	14,569
No District	Dallas	2,282	3,199	3,208	3,199	3,208	3,199	3,208	3,199
No District	Hunt	0	0	0	0	0	0	0	0
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Rockwall	0	0	0	0	0	0	0	0
No District Total		2,282	3,199	3,208	3,199	3,208	3,199	3,208	3,199
Groundwater Man Area 8	agement	30,484	40,827	40,939	40,827	40,939	40,827	40,939	40,827

January 19, 2018 Page 36 of 102

TABLE 4. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (TRAVIS PEAK) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	1,906	3,464	3,474	3,464	3,474	3,464	3,474	3,464
Clearwater UWCD	Bell	1,957	8,270	8,293	8,270	8,293	8,270	8,293	8,270
Middle Trinity GCD	Bosque	5,255	7,678	7,699	7,678	7,699	7,678	7,699	7,678
Middle Trinity GCD	Comanche	9,793	6,160	6,177	6,160	6,177	6,160	6,177	6,160
Middle Trinity GCD	Coryell	3,350	4,371	4,383	4,371	4,383	4,371	4,383	4,371
Middle Trinity GCD	Erath	8,263	11,815	11,849	11,815	11,849	11,815	11,849	11,815
Middle Trinity GCD Total		26,661	30,024	30,108	30,024	30,108	30,024	30,108	30,024
Post Oak Savannah GCD	Milam	0	0	0	0	0	0	0	0
Prairielands GCD	Ellis	5,583	5,032	5,046	5,032	5,046	5,032	5,046	5,032
Prairielands GCD	Hill	3,700	3,550	3,559	3,550	3,559	3,550	3,559	3,550
Prairielands GCD	Johnson	5,602	4,941	4,955	4,941	4,955	4,941	4,955	4,941
Prairielands GCD	Somervell	2,560	2,847	2,854	2,847	2,854	2,847	2,854	2,847
Prairielands GCD Total		17,445	16,370	16,414	16,370	16,414	16,370	16,414	16,370
Red River GCD	Fannin	0	0	0	0	0	0	0	0
Saratoga UWCD	Lampasas	1,669	1,599	1,603	1,599	1,603	1,599	1,603	1,599
Southern Trinity GCD	McLennan	13,252	20,635	20,691	20,635	20,691	20,635	20,691	20,635
Upper Trinity GCD	Hood (downdip)	70	89	89	89	89	89	89	89
No District	Brown	680	394	3 95	394	395	394	395	394
No District	Dallas	0	0	0_	0	0	0	0	0
No District	Delta	0	0	0	0	0	0	0	0
No District	Falls	1,158	1,434	1,438	1,434	1,438	1,434	1,438	1,434
No District	Hamilton	1,685	2,207	2,213	2,207	2,213	2,207	2,213	2,207
No District	Hunt	0	0	0	0	0	0	0	0
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Lamar	0	0	0	0	0	0	0	0
No District	Limestone	0	0	0	0	0	0	0	0_
No District	Mills	1,011	2,275	2,282	2,275	2,282	2,275	2,282	2,275
No District	Navarro	0	0	0	0	0	0	0	0
No District	Red River	0	0	0	0	0	0	0	0
No District	Travis	3,442	4,113	4,125	4,113	4,125	4,113	4,125	4,113
No District	Williamson	3,026	2,883	2,891	2,883	2,891	2,883	2,891	2,883

January 19, 2018 Page 37 of 102

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
No District Total		11,002	13,306	13,344	13,306	13,344	13,306	13,344	13,306
Groundwater Mana Area 8	agement	73,962	93,757	94,016	93,757	94,016	93,757	94,016	93,757

January 19, 2018 Page 38 of 102

TABLE 5. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (HENSELL) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	51	1,888	1,894	1,888	1,894	1,888	1,894	1,888
Clearwater UWCD	Bell	355	1,096	1,099	1,096	1,099	1,096	1,099	1,096
Middle Trinity GCD	Bosque	2,909	3,835	3,845	3,835	3,845	3,835	3,845	3,835
Middle Trinity GCD	Comanche	188	204	204	204	204	204	204	204
Middle Trinity GCD	Coryell	1,679	2,196	2,202	2,196	2,202	2,196	2,202	2,196
Middle Trinity GCD	Erath	3,446	5,137	5,151	5,137	5,151	5,137	5,151	5,137
Middle Trinity GCD Total		8,222	11,372	11,402	11,372	11,402	11,372	11,402	11,372
Post Oak Savannah GCD	Milam	0	0	0	0	0	0	0	0
Prairielands GCD	Ellis	0	0	0	0	0	0	0	0
Prairielands GCD	Hill	237	225	226	225	226	225	226	225
Prairielands GCD	Johnson	1,530	1,083	1,086	1,083	1,086	1,083	1,086	1,083
Prairielands GCD	Somervell	1,822	1,973	1,978	1,973	1,978	1,973	1,978	1,973
Prairielands GCD Total		3,589	3,281	3,290	3,281	3,290	3,281	3,290	3,281
Saratoga UWCD	Lampasas	730	712	715	712	715	712	715	712
Southern Trinity GCD	McLennan	3,018	4,698	4,711	4,698	4,711	4,698	4,711	4,698
Upper Trinity GCD	Hood (downdip)	45	36	36	36	36	36	36	36
No District	Brown	6	4	4	4	4	4	4	4
No District	Dallas	0	0	0	0	0	0	0	0_
No District	Falls	0	0	0	0	0	0	0	0
No District	Hamilton	1,221	1,671	1,675	1,671	1,675	1,671	1,675	1,671
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Limestone	0	0	0	0	0	0	0	0
No District	Mills	224	607	608	607	608	607	608	607
No District	Navarro	0	0	0	0	0	0	0	0
No District	Travis	919	1,141	1,144	1,141	1,144	1,141	1,144	1,141
No District	Williamson	772	751	753	751	753	751	753	751
No District Total		3,142	4,174	4,184	4,174	4,184	4,174	4,184	4,174
Groundwater Man Area 8	agement	19,152	27,257	27,331	27,257	27,331	27,257	27,331	27,257

January 19, 2018 Page 39 of 102

TABLE 6. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (HOSSTON) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	1,799	1,379	1,382	1,379	1,382	1,379	1,382	1,379
Clearwater UWCD	Bell	1,375	7,174	7,193	7,174	7,193	7,174	7,193	7,174
Middle Trinity GCD	Bosque	2,289	3,762	3,772	3,762	3,772	3,762	3,772	3,762
Middle Trinity GCD	Comanche	9,504	5,864	5,881	5,864	5,881	5,864	5,881	5,864
Middle Trinity GCD	Coryeli	1,661	2,161	2,167	2,161	2,167	2,161	2,167	2,161
Middle Trinity GCD	Erath	4,637	6,383	6,400	6,383	6,400	6,383	6,400	6,383
Middle Trinity GCD Total		18,091	18,170	18,220	18,170	18,220	18,170	18,220	18,170
Post Oak Savannah GCD	Milam	0	0	0	0	0	0	0	0
Prairielands GCD	Ellis	5,575	5,026	5,040	5,026	5,040	5,026	5,040	5,026
Prairielands GCD	Hill	3,413	3,272	3,281	3,272	3,281	3,272	3,281	3,272
Prairielands GCD	Johnson	4,061	3,853	3,863	3,853	3,863	3,853	3,863	3,853
Prairielands GCD	Somervell	736	843	845	843	845	843	845	843
Prairielands GCD Total		13,785	12,994	13,029	12,994	13,029	12,994	13,029	12,994
Saratoga UWCD	Lampasas	907	857	859	857	859	857	859	857
Southern Trinity GCD	McLennan	10,212	15,937	15,980	15,937	15,980	15,937	15,980	15,937
Upper Trinity GCD	Hood (downdip)_	25	53	53	53	53	53	53	53
No District	Brown	624	356	358	356	358	356	358	356
No District	Dallas	0	0	0	0	0	0	0	0
No District	Falls	1,157	1,434	1,438	1,434	1,438	1,434	1,438	1,434
No District	Hamilton	325	385	386	385	386	385	386	385
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Limestone	0	0	0	0	0	0	0	0
No District	Mills	650	1,467	1,471	1,467	1,471	1,467	1,471	1,467
No District	Navarro	0	0	0	0	0	0	0	0
No District	Travis	2,357	2,783	2,791	2,783	2,791	2,783	2,791	2,783
No District	Williamson	2,050	1,933	1,938	1,933	1,938	1,933	1,938	1,933
No District Total		7,163	8,358	8,382	8,358	8,382	8,358	8,382	8,358
Groundwater Mana Area 8	53,357	64,922	65,098	64,922	65,098	64,922	65,098	64,922	

January 19, 2018 Page 40 of 102

TABLE 7. MODELED AVAILABLE GROUNDWATER FOR THE TRINITY AQUIFER (ANTLERS) IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Middle Trinity GCD	Comanche	9,320	5,839	5,855	5,839	5,855	5,839	5,855	5,839
Middle Trinity GCD	Erath	1,663	2,628	2,636	2,628	2,636	2,628	2,636	2,628
Middle Trinity GCD Total		10,983	8,467	8,491	8,467	8,491	8,467	8,491	8,467
North Texas GCD	Collin	629	1,961	1,966	1,961	1,966	1,961	1,966	1,961
North Texas GCD	Cooke	4,117	10,514	10,544	10,514	10,544	10,514	10,544	10,514
North Texas GCD	Denton	11,427	16,545	16,591	16,545	16,591	16,545	16,591	16,545
North Texas GCD Total		16,173	29,020	29,101	29,020	29,101	29,020	29,101	29,020
Northern Trinity GCD	Tarrant	1,908	1,248	1,251	1,248	1,251	1,248	1,251	1,248
Red River GCD	Fannin	0	0	0	0	0	0	0	0
Red River GCD	Grayson	6,872	10,708	10,738	10,708	10,738	10,708	10,738	10,708
Red River GCD Total		6,872	10,708	10,738	10,708	10,738	10,708	10,738	10,708
Upper Trinity GCD	Montague (outcrop)	1,421	3,875	3,886	3,875	3,886	3,875	3,886	3,875
Upper Trinity GCD	Parker (outcrop)	3,321	2,897	2,905	2,897	2,905	2,897	2,905	2,897
Upper Trinity GCD	Wise (outcrop)	9,080	7,677	7,698	7,677	7,698	7,677	7,698	7,677
Upper Trinity GCD	Wise (downdip)	3,699	2,057	2,062	2,057	2,062	2,057	2,062	2,057
Upper Trinity GCD Total		17,521	16,506	16,551	16,506	16,551	16,506	16,551	16,506
No District	Brown	1,743	1,052	1,055	1,052	1,055	1,052	1,055	1,052
No District	Callahan	1,804	1,725	1,730	1,725	1,730	1,725	1,730	1,725
No District	Eastland	5,613	5,732	5,747	5,732	5,747	5,732	5,747	5,732
No District	Lamar	0	0	0	0	0	0	0	0
No District	Red River	0	0	0	0	0	0	0	0
No District	Taylor	17	13	13	13	13	13	13	13
No District Total		9,177	8,522	8,545	8,522	8,545	8,522	8,545	8,522
Groundwater Man Area 8	Groundwater Management Area 8		74,471	74,677	74,471	74,677	74,471	74,677	74,471

January 19, 2018 Page 41 of 102

TABLE 8. MODELED AVAILABLE GROUNDWATER FOR THE WOODBINE AQUIFER IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
North Texas GCD	Collin	2,427	4,251	4,263	4,251	4,263	4,251	4,263	4,251
North Texas GCD	Cooke	1,646	800	802	800	802	800	802	800
North Texas GCD	Denton	3,797	3,607	3,616	3,607	3,616	3,607	3,616	3,607
North Texas GCD Total		7,870	8,658	8,681	8,658	8,681	8,658	8,681	8,658
Northern Trinity GCD	Tarrant	2,646	1,138	1,141	1,138	1,141	1,138	1,141	1,138
Prairielands GCD	Ellis	2,471	2,073	2,078	2,073	2,078	2,073	2,078	2,073
Prairielands GCD	Hill	752	586	588	586	588	586	588	586
Prairielands GCD	Johnson	3,880	1,980	1,985	1,980	1,985	1,980	1,985	1,980
Prairielands GCD Total		7,103	4,639	4,651	4,639	4,651	4,639	4,651	4,639
Red River GCD	Fannin	5,495	4,920	4,934	4,920	4,934	4,920	4,934	4,920
Red River GCD	Grayson	5,056	7,521	7,541	7,521	7,541	7,521	7,541	7,521
Red River GCD Total		10,551	12,441	12,475	12,441	12,475	12,441	12,475	12,441
Southern Trinity GCD	McLennan	0	0	0	0	0	0	0	0
No District	Dallas	1,957	2,796	2,804	2,796	2,804	2,796	2,804	2,796
No District	Hunt	463	763	765	763	765	763	765	763
No District	Kaufman	0	0	0	0	0	0	0	0
No District	Lamar	61	49	49	49	49	49	49	49
No District	Navarro	65	68	68	68	68	68	68	68
No District	Red River	3	2	2	2	2	2	2	2
No District	Rockwall	0	0	0	0	0	0	0	0
No District Total		2,549	3,678	3,688	3,678	3,688	3,678	3,688	3,678
Groundwater Man Area 8	agement	30,719	30,554	30,636	30,554	30,636	30,554	30,636	30,554

January 19, 2018 Page 42 of 102

TABLE 9. MODELED AVAILABLE GROUNDWATER FOR THE EDWARDS (BALCONES FAULT ZONE)
AQUIFER IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY
GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE
BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET
PER YEAR.

GCD	County	2000	2010	2020	2030	2040	2050	2060	2070
Clearwater UWCD	Bell	949	6,469	6,469	6,469	6,469	6,469	6,469	6,469
No District	Travis	1,201	5,237	5,237	5,237	5,237	5,237	5,237	5,237
No District	Williamson	13,813	3,462	3,462	3,462	3,462	3,462	3,462	3,462
Groundwater Management Area 8		15,981	15,168	15,168	15,168	15,168	15,168	15,168	15,168

UWCD: Underground Water Conservation District.

TABLE 10. MODELED AVAILABLE GROUNDWATER FOR THE MARBLE FALLS AQUIFER IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	2,220	2,736	2,744	2,736	2,744	2,736	2,744	2,736
Saratoga UWCD	Lampasas	363	2,837	2,845	2,837	2,845	2,837	2,845	2,837
No District	Brown	0	25	25	25	25	25	25	25
No District	Mills	20	25	25	25	25	25	25	25
No District Total		20	50	50	50	50	50	50	50
Groundwater Management Area 8		2,603	5,623	5,639	5,623	5,639	5,623	5,639	5,623

January 19, 2018 Page 43 of 102

TABLE 11. MODELED AVAILABLE GROUNDWATER FOR THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	5,256	10,827	10,857	10,827	10,857	10,827	10,857	10,827
Saratoga UWCD	Lampasas	351	2,593	2,601	2,593	2,601	2,593	2,601	2,593
No District	Brown	1	131	131	131	131	131	131	131
No District	Mills	0	499	500	499	500	499	500	499
No District Total		1	630	631	630	631	630	631	630
Groundwater Management Area 8		5,608	14,050	14,089	14,050	14,089	14,050	14,089	14,050

UWCD: Underground Water Conservation District.

TABLE 12. MODELED AVAILABLE GROUNDWATER FOR THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2010 AND 2070 WITH BASELINE YEAR 2009. VALUES ARE IN ACRE-FEET PER YEAR.

GCD	County	2009	2010	2020	2030	2040	2050	2060	2070
Central Texas GCD	Burnet	1,088	3,413	3,423	3,413	3,423	3,413	3,423	3,413
Saratoga UWCD	Lampasas	0	113	114	113	114	113	114	113
No District	Brown	0	12	12	12	12	12	12	12
No District	Mills	0	36	36	36	36	36	36	36
No Distri	rt Total	0	48	48	48	48	48	48	48
Groundw Managem	ater ent Area 8	1,088	3,574	3,585	3,574	3,585	3,574	3,585	3,574

January 19, 2018 Page 44 of 102

TABLE 13. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (PALUXY) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
		Counti	es Not in U	pper Trini	ty GCD			
Bell	Region G	Brazos	0	0	0	0	0	0
Bosque	Region G	Brazos	358	356	358	356	358	356
Collin	Region C	Sabine	0	0	0	0	0	0
Collin	Region C	Trinity	1,551	1,547	1,551	1,547	1,551	1,547
Coryell	Region G	Brazos	0	0	0	0	0	0
Dallas	Region C	Trinity	359	358	359	358	359	358
Delta	Northeast Texas	Sulphur	56	56	56	56	56	56
Denton	Region C	Trinity	4,832	4,819	4,832	4,819	4,832	4,819
Ellis	Region C	Trinity	443	442	443	442	443	442
Erath	Region G	Brazos	61	61	61	61	61	61
Falls	Region G	Brazos	0	0	0	0	0	0
Fannin	Region C	Sulphur	2,092	2,087	2,092	2,087	2,092	2,087
Fannin	Region C	Trinity	0	0	0	0	0	0
Grayson	Region C	Trinity	0	0	0	0	0	0
Hamilton	Region G	Brazos	0	0	0	0	0	0
Hill	Region G	Brazos	348	347	348	347	348	347
Hill	Region G	Trinity	5	5	5	5	5	5
Hunt o	Northeast Texas	Sabine	0	0	0	0	0	0
Hunt	Northeast Texas	Sulphur	3	3	3	3	3	3
Hunt	Northeast Texas	Trinity	0	0	0	0	0	0
Johnson	Region G	Brazos	880	878	880	878	880	878
Johnson	Region G	Trinity	1,567	1,562	1,567	1,562	1,567	1,562
Kaufman	Region C	Trinity	0	0	0	0	0	0
Lamar	Northeast Texas	Red	0	0	0	0	0	0
Lamar	Northeast Texas	Sulphur	8	8	8	8	8	8
Limestone	Region G	Brazos	0	0	0	0	0	0
Limestone	Region G	Trinity	0	0	0	0	0	0
McLennan	Region G	Brazos	0	0	0	0	0	0
Mills	Lower Colorado	Brazos	6	6	6	6	6	6
Mills	Lower Colorado	Colorado	0	0	0	0	0	0
Navarro	Region C	Trinity	0	0	0	0	0	0 :
Red River	Northeast Texas	Red	52	52	52	52	52	52
Red River	Northeast Texas	Sulphur	125	125	125	125	125	125

January 19, 2018 Page 45 of 102

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Rockwall	Region C	Trinity	0	0	0	0	0	0
Somervell	Region G	Brazos	14	14	14	14	14	14
Tarrant	Region C	Trinity	8,982	8,957	8,982	8,957	8,982	8,957
	Subtotal		21,742	21,683	21,742	21,683	21,742	21,683
Ψ		Cou	nties in Up	per Trinity	GCD			
Hood (outcrop)	Region G	Brazos	159	158	159	158	159	158
Hood (outcrop)	Region G	Trinity	0	0	0	0	0	0
Parker (outcrop)	Region C	Brazos	34	34	34	34	34	34
Parker (outcrop)	Region C	Trinity	2,580	2,573	2,580	2,573	2,580	2,573
Parker (downdip)	Region C	Trinity	50	50	50	50	50	50
	Subtotal			2,815	2,823	2,815	2,823	2,815
Groundwa	Groundwater Management Area 8			24,498	24,565	24,498	24,565	24,498

January 19, 2018 Page 46 of 102

TABLE 14. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (GLEN ROSE) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
		Countie	es Not in U	pper Trini	ty GCD			
Bell	Region G	Brazos	974	971	974	971	974	971
Bosque	Region G	Brazos	731	728	731	728	731	728
Brown	Region F	Colorado	0	0	0	0	0	0
Burnet	Lower Colorado	Brazos	188	188	188	188	188	188
Burnet	Lower Colorado	Colorado	236	235	236	235	236	235
Collin	Region C	Sabine	0	0	0	0	0	0
Collin	Region C	Trinity	83	83	83	83	83	83
Comanche	Region G	Brazos	22	22	22	22	22	22
Comanche	Region G	Colorado	18	18	18	18	18	18
Coryell	Region G	Brazos	120	120	120	120	120	120
Dallas	Region C	Trinity	132	131	132	131	132	131
Delta	Northeast Texas	Sulphur	0	0	0	0	0	0
Denton	Region C	Trinity	339	338	339	338	339	338
Ellis	Region C	Trinity	50	50	50	50	50	50
Erath	Region G	Brazos	1,081	1,078	1,081	1,078	1,081	1,078
Falls	Region G	Brazos	0	0	0	0	0	0
Fannin	Region C	Sulphur	0	0	0	0	0	0
Fannin	Region C	Trinity	0	0	0	0	0	0
Grayson	Region C	Trinity	0	0	0	0	0	0
Hamilton	Region G	Brazos	218	218	218	218	218	218
Hill	Region G	Brazos	115	114	115	114	115	114
Hill	Region G	Trinity	1	1	1	1	1	1
Hunt	Northeast Texas	Sabine	0	0	0	0	0	0
Hunt	Northeast Texas	Sulphur	0	0	0	0	0	0
Hunt	Northeast Texas	Trinity	0	0	0	0	0	0
Johnson	Region G	Brazos	953	950	953	950	953	950
Johnson	Region G	Trinity	683	681	683	681	683	681
Kaufman	Region C	Trinity	0	0	0	0	0	0
Lamar	Northeast Texas	Red	0	0	0	0	0	0
Lamar	Northeast Texas	Sulphur	0	0	0	0	0	0
Lampasas	Region G	Brazos	68	68	68	68	68	68
Limestone	Region G	Brazos	0	0	0	0	0	0
Limestone	Region G	Trinity	0	0	0	0	0	0

GAM Run 17-029 MAG: Modeled Available Groundwater for the Trinity, Woodbine, Edwards (Balcones Fault Zone), Marble Falls, Ellenburger-San Saba, and Hickory Aquifers in Groundwater Management Area 8

January 19, 2018 Page 47 of 102

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
McLennan	Region G	Brazos	0	0	0	0	0	0
Milam	Region G	Brazos	0	0	0	0	0	0
Mills	Lower Colorado	Brazos	96	96	96	96	96	96
Mills	Lower Colorado	Colorado	93	93	93	93	93	93
Navarro	Region C	Trinity	0	0	0	0	0	0
Red River	Northeast Texas	Red	0	0	0	0	0	0
Red River	Northeast Texas	Sulphur	0	0	0	0	0	0
Rockwall	Region C	Trinity	0	0	0	0	0	0
Somervell	Region G	Brazos	146	146	146	146	146	146
Tarrant	Region C	Trinity	795	793	795	793	795	793
Travis	Lower Colorado	Brazos	0	0	0	0	0	0
Travis	Lower Colorado	Colorado	974	971	974	971	974	971
Williamson	Region G	Brazos	623	621	623	621	623	621
Williamson	Region G	Colorado	0	0	0	0	0	0
Williamson	Lower Colorado	Brazos	0	0	0	0	0	0
Williamson	Lower Colorado	Colorado	67	67	67	67	67	67
	Subtotal		8,806	8,781	8,806	8,781	8,806	8,781
	(2)	Coun	ties in Upp	er Trinity	GCD			
Hood (outcrop)	Region G	Brazos	655	653	655	653	655	653
Hood (downdip)	Region G	Brazos	83	83	83	83	83	83
Hood (downdip)	Region G	Trinity	20	20	20	20	20	20
Parker (outcrop)	Region C	Brazos	87	87	87	87	87	87
Parker (downdip)	Region C	Brazos	7	7	7	7	7	7
Parker (outcrop)	Region C	Trinity	2,208	2,202	2,208	2,202	2,208	2,202
Parker (downdip)	Region C	Trinity	869	866	869	866	869	866
	Subtotal		3,929	3,918	3,929	3,918	3,929	3,918
Groundwate	er Management Ar	ea 8	12,735	12,699	12,735	12,699	12,735	12,699

January 19, 2018 Page 48 of 102

TABLE 15. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (TWIN MOUNTAINS) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County R	WPA	River Basin	2020	2030	2040	2050	2060	2070
		Counti	es Not in U	pper Trinit	ty GCD			
Collin Re	egion C	Sabine	0	0	0	0	0	0
Collin Re	egion C	Trinity	2,207	2,201	2,207	2,201	2,207	2,201
Dallas Re	egion C	Trinity	3,208	3,199	3,208	3,199	3,208	3,199
Denton Re	egion C	Trinity	8,389	8,366	8,389	8,366	8,389	8,366
Ellis Re	egion C	Trinity	0	0	0	0	0	0
Erath Re	egion G	Brazos	5,031	5,017	5,031	5,017	5,031	5,017
Fannin Re	egion C	Sulphur	0	0	0	0	0	0
Fannin Re	egion C	Trinity	0	0	0	0	0	0
Grayson Re	egion C	Trinity	0	0	0	0	0	0
Hunt No	ortheast Texas	Sabine	0	0	0	0	0	0
Hunt No	ortheast Texas	Trinity	0	0	0	0	0	0
Johnson Re	egion G	Brazos	133	133	133	133	133	133
Johnson Re	egion G	Trinity	252	251	252	251	252	251
Kaufman Re	egion C	Trinity	0	0	0	0	0	0
Rockwall Re	egion C	Trinity	0	0	0	0	0	0
Somervell Ro	egion G	Brazos	174	174	174	174	174	174
Tarrant R	egion C	Trinity	6,936	6,917	6,936	6,917	6,936	6,917
	Subtotal		26,330	26,258	26,330	26,258	26,330	26,258
		Cou	nties in Upp	per Trinity	GCD			
Hood (outcrop)	egion G	Brazos	3,672	3,662	3,672	3,662	3,672	3,662
(downdip)	egion G	Brazos	7,761	7,740	7,761	7,740	7,761	7,740
(downdip)	egion G	Trinity	19	19	19	19	19	19
Parker (outcrop)	egion C	Brazos	1,069	1,066	1,069	1,066	1,069	1,066
Parker (downdip)	egion C	Brazos	778	776	778	776	778	776
Parker (downdip)	egion C	Trinity	1,310	1,306	1,310	1,306	1,310	1,306
	Subtotal		14,609	14,569	14,609	14,569	14,609	14,569
Groundwater M	lanagement Ar	ea 8	40,939	40,827	40,939	40,827	40,939	40,827

January 19, 2018 Page 49 of 102

TABLE 16. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (TRAVIS PEAK) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACREFEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
		Counties	Not in Up	per Trinity	GCD			
Bell	Region G	Brazos	8,293	8,270	8,293	8,270	8,293	8,270
Bosque	Region G	Brazos	7,699	7,678	7,699	7,678	7,699	7,678
Brown	Region F	Brazos	3	3	3	3	3	3
Brown	Region F	Colorado	392	391	392	391	392	391
Burnet	Lower Colorado	Brazos	2,950	2,943	2,950	2,943	2,950	2,943
Burnet	Lower Colorado	Colorado	523	521	523	521	523	521
Comanche	Region G	Brazos	6,128	6,111	6,128	6,111	6,128	6,111
Comanche	Region G	Colorado	49	49	49	49	49	49
Coryell	Region G	Brazos	4,383	4,371	4,383	4,371	4,383	4,371
Dallas	Region C	Trinity	0	0	0	0	0	0
Delta	Northeast Texas	Sulphur	0	0	0	0	0	0
Ellis	Region C	Trinity	5,046	5,032	5,046	5,032	5,046	5,032
Erath	Region G	Brazos	11,849	11,815	11,849	11,815	11,849	11,815
Falls	Region G	Brazos	1,438	1,434	1,438	1,434	1,438	1,434
Fannin	Region C	Sulphur	0	0	0	0	0	0
Fannin	Region C	Trinity	0	0	0	0	0	0
Hamilton	Region G	Brazos	2,213	2,207	2,213	2,207	2,213	2,207
Hill	Region G	Brazos	3,304	3,295	3,304	3,295	3,304	3,295
Hill	Region G	Trinity	256	255	256	255	256	255
Hunt	Northeast Texas	Sabine	0	0	0	0	0	0
Hunt	Northeast Texas	Sulphur	0	0	0	0	0	0
Hunt	Northeast Texas	Trinity	0	0	0	0	0	0
Johnson	Region G	Brazos	1,932	1,927	1,932	1,927	1,932	1,927
Johnson	Region G	Trinity	3,022	3,014	3,022	3,014	3,022	3,014
Kaufman	Region C	Trinity	0	0	0	0	0	0
Lamar	Northeast Texas	Red	0	0	0	0	0	0
Lamar	Northeast Texas	Sulphur	0	0	0	0	0	0
Lampasas	Region G	Brazos	1,528	1,523	1,528	1,523	1,528	1,523
Lampasas	Region G	Colorado	76	75	76	75	76	75
Limestone	Region G	Brazos	0	0	0	0	0	0
Limestone	Region G	Trinity	0	0	0	0	0	0
McLennan	Region G	Brazos	20,691	20,635	20,691	20,635	20,691	20,635
Milam	Region G	Brazos	0	0	0	0	0	0

GAM Run 17-029 MAG: Modeled Available Groundwater for the Trinity, Woodbine, Edwards (Balcones Fault Zone), Marble Falls, Ellenburger-San Saba, and Hickory Aquifers in Groundwater Management Area 8

January 19, 2018 Page 50 of 102

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Mills	Lower Colorado	Brazos	706	703	706	703	706	703
Mills	Lower Colorado	Colorado	1,576	1,572	1,576	1,572	1,576	1,572
Navarro	Region C	Trinity	0	0	0	0	0	0
Red River	Northeast Texas	Red	0	0	0	0	0	0
Red River	Northeast Texas	Sulphur	0	0	0	0	0	0
Somervell	Region G	Brazos	2,854	2,847	2,854	2,847	2,854	2,847
Travis	Lower Colorado	Brazos	1	1	1	1	1	1
Travis	Lower Colorado	Colorado	4,124	4,112	4,124	4,112	4,124	4,112
Williamson	Region G	Brazos	2,885	2,877	2,885	2,877	2,885	2,877
Williamson	Region G	Colorado	5	5	5	5	5	5
Williamson	Lower Colorado	Brazos	0	0	0	0	0	0
Williamson	Lower Colorado	Colorado	0	0	0	0	0	0
	Subtotal		93,926	93,666	93,926	93,666	93,926	93,666
		Count	ies in Uppe	er Trinity (GCD			
Hood (downdip)	Region G	Brazos	89	89	89	89	89	89
	Subtotal		89	89	89	89	89	89
Groundwate	Groundwater Management Area 8			93,755	94,015	93,755	94,015	93,755

January 19, 2018 Page 51 of 102

TABLE 17. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (HENSELL) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
	,	Countie	s Not in U	pper Trinit	y GCD			
Bell	Region G	Brazos	1,099	1,096	1,099	1,096	1,099	1,096
Bosque	Region G	Brazos	3,845	3,835	3,845	3,835	3,845	3,835
Brown	Region F	Colorado	4	4	4	4	4	4
Burnet	Lower Colorado	Brazos	1,761	1,757	1,761	1,757	1,761	1,757
Burnet	Lower Colorado	Colorado	133	132	133	132	133	132
Comanche	Region G	Brazos	181	180	181	180	181	180
Comanche	Region G	Colorado	24	24	24	24	24	24
Coryell	Region G	Brazos	2,202	2,196	2,202	2,196	2,202	2,196
Dallas	Region C	Trinity	0	0	0	0	0	0
Ellis	Region C	Trinity	0	0	0	0	0	0
Erath	Region G	Brazos	5,151	5,137	5,151	5,137	5,151	5,137
Falls	Region G	Brazos	0	0	0	0	0	0
Hamilton	Region G	Brazos	1,675	1,671	1,675	1,671	1,675	1,671
Hill	Region G	Brazos	225	224	225	224	225	224
Hill	Region G	Trinity	1	1	1	1	1	1
Johnson	Region G	Brazos	618	616	618	616	618	616
Johnson	Region G	Trinity	468	467	468	467	468	467
Kaufman	Region C	Trinity	0	0	0	0	0	0
Lampasas	Region G	Brazos	713	711	713	711	713	711
Lampasas	Region G	Colorado	1	1	1	1	1	1
Limestone	Region G	Brazos	0	0	0	0	0	0
Limestone	Region G	Trinity	0	0	0	0	0	0
McLennan	Region G	Brazos	4,711	4,698	4,711	4,698	4,711	4,698
Milam	Region G	Brazos	0	0	. 0	0	0	0
Mills	Lower Colorado	Brazos	172	172	172	172	172	172
Mills	Lower Colorado	Colorado	436	435	436	435	436	435
Navarro	Region C	Trinity	0	0	0	0	0	0
Somervell	Region G	Brazos	1,978	1,973	1,978	1,973	1,978	1,973
Travis	Lower Colorado	Brazos	1	1	1	1	1	1
Travis	Lower Colorado	Colorado	1,144	1,141	1,144	1,141	1,144	1,141
Williamson	Region G	Brazos	753	751	753	751	753	751
Williamson	Region G	Colorado	0	0	0	0	0	0
Williamson	Lower Colorado	Brazos	0	0	0	0	0	0

Page 52 of 102

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Williamson	Lower Colorado	Colorado	0	0	0	0	0	0
	Subtotal		27,296	27,223	27,296	27,223	27,296	27,223
		Coun	ties in Upp	er Trinity	GCD			
Hood (downdip)	Region G	Brazos	36	36	36	36	36	36
	Subtotal		36	36	36	36	36	36
Groundwater Management Area 8			27,332	27,259	27,332	27,259	27,332	27,259

January 19, 2018 Page 53 of 102

TABLE 18. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (HOSSTON) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
		Countie	s Not in U	pper Trinit	y GCD			
Bell	Region G	Brazos	7,193	7,174	7,193	7,174	7,193	7,174
Bosque	Region G	Brazos	3,772	3,762	3,772	3,762	3,772	3,762
Brown	Region F	Brazos	3	3	3	3	3	3
Brown	Region F	Colorado	355	353	355	353	355	353
Burnet	Lower Colorado	Brazos	1,027	1,025	1,027	1,025	1,027	1,025
Burnet	Lower Colorado	Colorado	355	354	355	354	355	354
Comanche	Region G	Brazos	5,875	5,858	5,875	5,858	5,875	5,858
Comanche	Region G	Colorado	6	6	6	6	6	6
Coryell	Region G	Brazos	2,167	2,161	2,167	2,161	2,167	2,161
Dallas	Region C	Trinity	0	0	0	0	0	0
Ellis	Region C	Trinity	5,040	5,026	5,040	5,026	5,040	5,026
Erath	Region G	Brazos	6,400	6,383	6,400	6,383	6,400	6,383
Falls	Region G	Brazos	1,438	1,434	1,438	1,434	1,438	1,434
Hamilton	Region G	Brazos	386	385	386	385	386	385
Hill	Region G	Brazos	3,026	3,018	3,026	3,018	3,026	3,018
Hill	Region G	Trinity	255	254	255	254	255	254
Johnson	Region G	Brazos	1,311	1,307	1,311	1,307	1,311	1,307
Johnson	Region G	Trinity	2,553	2,546	2,553	2,546	2,553	2,546
Kaufman	Region C	Trinity	0	0	0	0	0	0
Lampasas	Region G	Brazos	786	783	786	783	786	783
Lampasas	Region G	Colorado	72	72	72	72	72	72
Limestone	Region G	Brazos	0	0	0	0	0	0
Limestone	Region G	Trinity	0	, O	0	0	0	0
McLennan	Region G	Brazos	15,980	15,937	15,980	15,937	15,980	15,937
Milam	Region G	Brazos	0	0	0	0	0	0
Mills	Lower Colorado	Brazos	376	375	376	375	376	375
Mills	Lower Colorado	Colorado	1,096	1,093	1,096	1,093	1,096	1,093
Navarro	Region C	Trinity	0	0	0	0	0	0
Somervell	Region G	Brazos	845	843	845	843	845	843
Travis	Lower Colorado	Brazos	0	0	0	0	0	0
Travis	Lower Colorado	Colorado	2,791	2,783	2,791	2,783	2,791	2,783
Williamson	Region G	Brazos	1,933	1,928	1,933	1,928	1,933	1,928
Williamson	Region G	Colorado	5	5	5	5	5	5

January 19, 2018 Page 54 of 102

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Williamson	Lower Colorado	Brazos	0	0	0	0	0	0
Williamson	Lower Colorado	Colorado	0	0	0	0	0	0
	Subtotal		65,046	64,868	65,046	64,868	65,046	64,868
		Coun	ties in Upp	er Trinity	GCD			
Hood (downdip)	Region G	Brazos	53	53	53	53	53	53
	Subtotal		53	53	53	53	53	53
Groundwater Management Area 8		65,099	64,921	65,099	64,921	65,099	64,921	

January 19, 2018 Page 55 of 102

TABLE 19. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE TRINITY AQUIFER (ANTLERS) IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
		Countie	es Not in U	pper Trini(ty GCD			
Brown	Region F	Brazos	48	48	48	48	48	48
Brown	Region F	Colorado	1,007	1,004	1,007	1,004	1,007	1,004
Callahan	Region G	Brazos	444	443	444	443	444	443
Callahan	Region G	Colorado	1,285	1,282	1,285	1,282	1,285	1,282
Collin	Region C	Trinity	1,966	1,961	1,966	1,961	1,966	1,961
Comanche	Region G	Brazos	5,855	5,839	5,855	5,839	5,855	5,839
Cooke	Region C	Red	2,191	2,184	2,191	2,184	2,191	2,184
Cooke	Region C	Trinity	8,353	8,330	8,353	8,330	8,353	8,330
Denton	Region C	Trinity	16,591	16,545	16,591	16,545	16,591	16,545
Eastland	Region G	Brazos	5,194	5,180	5,194	5,180	5,194	5,180
Eastland	Region G	Colorado	553	552	553	552	553	552
Erath	Region G	Brazos	2,636	2,628	2,636	2,628	2,636	2,628
Fannin	Region C	Red	0	0	0	0	0	0
Fannin	Region C	Sulphur	0	0	0	0	0	0
Fannin	Region C	Trinity	0	0	0	0	0	0
Grayson	Region C	Red	6,678	6,660	6,678	6,660	6,678	6,660
Grayson	Region C	Trinity	4,059	4,048	4,059	4,048	4,059	4,048
Lamar	Northeast Texas	Red	0	0	0	0	0	0
Lamar	Northeast Texas	Sulphur	0	0	0	0	0	0
Red River	Northeast Texas	Red	0	0	0	0	0	0
Tarrant	Region C	Trinity	1,251	1,248	1,251	1,248	1,251	1,248
Taylor	Region G	Brazos	5	5	5	5	5	5
Taylor	Region G	Colorado	9	9	9	9	9	9
	Subtotal	<u> </u>	58,125	57,966	58,125	57,966	58,125	57,966
		Cour	ties in Upp	er Trinity	GCD			
Montague (outcrop)	Region B	Red	154	154	154	154	154	154
Montague (outcrop)	Region B	Trinity	3,732	3,721	3,732	3,721	3,732	3,721
Parker (outcrop)	Region C	Brazos	257	256	257	256	257	256
Parker (outcrop)	Region C	Trinity	2,648	2,640	2,648	2,640	2,648	2,640
Wise (outcrop)	Region C	Trinity	7,698	7,677	7,698	7,677	7,698	7,677

January 19, 2018 Page 56 of 102

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Wise (downdip)	Region C	Trinity	2,062	2,057	2,062	2,057	2,062	2,057
	Subtotal	· · · · · · · · · · · · · · · · · · ·	16,551	16,505	16,551	16,505	16,551	16,505
Groundwater Management Area 8		74,676	74,471	74,676	74,471	74,676	74,471	

January 19, 2018 Page 57 of 102

TABLE 20. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE WOODBINE AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Collin	Region C	Sabine	0	0	0	0	0	0
Collin	Region C	Trinity	4,263	4,251	4,263	4,251	4,263	4,251
Cooke	Region C	Red	262	261	262	261	262	261
Cooke	Region C	Trinity	540	538	540	538	540	538
Dallas	Region C	Trinity	2,804	2,796	2,804	2,796	2,804	2,796
Denton	Region C	Trinity	3,616	3,607	3,616	3,607	3,616	3,607
Ellis	Region C	Trinity	2,078	2,073	2,078	2,073	2,078	2,073
Fannin	Region C	Red	3,553	3,544	3,553	3,544	3,553	3,544
Fannin	Region C	Sulphur	551	550	551	550	551	550
Fannin	Region C	Trinity	829	827	829	827	829	827
Grayson	Region C	Red	5,615	5,599	5,615	5,599	5,615	5,599
Grayson	Region C	Trinity	1,926	1,922	1,926	1,922	1,926	1,922
Hill	Region G	Brazos	285	284	285	284	285	284
Hill	Region G	Trinity	303	302	303	302	303	302
Hunt	Northeast Texas	Sabine	269	268	269	268	269	268
Hunt	Northeast Texas	Sulphur	165	165	165	165	165	165
Hunt	Northeast Texas	Trinity	330	329	330	329	330	329
Johnson	Region G	Brazos	24	24	24	24	24	24
Johnson	Region G	Trinity	1,961	1,956	1,961	1,956	1,961	1,956
Kaufman	Region C	Trinity	0	0	0	0	0	0
Lamar	Northeast Texas	Red	0	0	0	0	0	0
Lamar	Northeast Texas	Sulphur	49	49	49	49	49	49
McLennan	Region G	Brazos	0	0	0	0	0	0
Navarro	Region C	Trinity	68	68	68	68	68	68
Red River	Northeast Texas	Red	2	2	2	2	2	2
Rockwall	Region C	Trinity	0	0	0	0	0	0
Tarrant	Region C	Trinity	1,141	1,138	1,141	1,138	1,141	1,138
Groundwa	ter Management Ar	ea 8	30,634	30,553	30,634	30,553	30,634	30,553

January 19, 2018 Page 58 of 102

TABLE 21. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN. MODELED AVAILABLE GROUNDWATER VALUES ARE FROM GAM RUN 08-010MAG BY ANAYA (2008).

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Bell	Region G	Brazos	6,469	6,469	6,469	6,469	6,469	6,469
Travis	Lower Colorado	Brazos	275	275	275	275	275	275
Travis	Lower Colorado	Colorado	4,962	4,962	4,962	4,962	4,962	4,962
Williamson	Region G	Brazos	3,351	3,351	3,351	3,351	3,351	3,351
Williamson	Region G	Colorado	101	101	101	101	101	101
Williamson	Lower Colorado	Brazos	6	6	6	6	6	6
Williamson	Lower Colorado	Colorado	4	4	4	4	4	4
Groundwater Management Area 8			15,168	15,168	15,168	15,168	15,168	15,168

TABLE 22. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE MARBLE FALLS AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Brown	Region F	Colorado	25	25	25	25	25	25
Burnet	Lower Colorado	Brazos	1,387	1,383	1,387	1,383	1,387	1,383
Burnet	Lower Colorado	Colorado	1,357	1,353	1,357	1,353	1,357	1,353
Lampasas	Region G	Brazos	1,958	1,952	1,958	1,952	1,958	1,952
Lampasas	Region G	Colorado	887	885	887	885	887	885
Mills	Lower Colorado	Brazos	1	1	1	1	1	1
Mills	Lower Colorado	Colorado	24	24	24	24	24	24
Groundwate	er Management	Area 8	5,639	5,623	5,639	5,623	5,639	5,623

January 19, 2018 Page 59 of 102

TABLE 23. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Brown	Region F	Colorado	131	131	131	131	131	131
Burnet	Lower Colorado	Brazos	3,833	3,822	3,833	3,822	3,833	3,822
Burnet	Lower Colorado	Colorado	7,024	7,005	7,024	7,005	7,024	7,005
Lampasas	Region G	Brazos	1,685	1,680	1,685	1,680	1,685	1,680
Lampasas	Region G	Colorado	916	913	916	913	916	913
Mills	Lower Colorado	Brazos	93	93	93	93	93	93
Mills	Lower Colorado	Colorado	407	406	407	406	407	406
Groundwat	er Management Ar	ea 8	14,089	14,050	14,089	14,050	14,089	14,050

TABLE 24. MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. RESULTS ARE IN ACRE-FEET PER YEAR AND ARE SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Brown	Region F	Colorado	12	12	12	12	12	12
Burnet	Lower Colorado	Brazos	1,240	1,236	1,240	1,236	1,240	1,236
Burnet	Lower Colorado	Colorado	2,183	2,177	2,183	2,177	2,183	2,177
Lampasas	Region G	Brazos	80	79	80	79	80	79
Lampasas	Region G	Colorado	34	34	34	34	34	34
Mills	Lower Colorado	Brazos	7	7	7	7	7	7
Mills	Lower Colorado	Colorado	29	29	29	29	29	29
Groundwate	Groundwater Management Area 8			3,574	3,585	3,574	3,585	3,574

January 19, 2018 Page 60 of 102

LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historic time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and groundwater levels in the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

January 19, 2018 Page 61 of 102

REFERENCES:

- Anaya, R., 2008, Gam Run 08-010mag: Managed available groundwater for the Edwards (Balcones Fault Zone) Aquifer in Bell, Travis, and Williamson counties, 7 p., http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR08-10mag-final.pdf?d=16598.495
- Beach, J., Keester, M., and Konetchy, B, 2016, LBG-Guyton Associates Technical Memorandum: Results of Predictive Simulation in Support of GMA 8 Joint Planning NTGCD GMA 8 Run 10 (January 14, 2016).
- Harbaugh, A. W., and McDonald, M. G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-485, 56 p.
- Jones, I., 2003, Groundwater Availability Modeling: Northern Segment of the Edwards Aquifer, Texas (December 2003), 75 p., http://www.twdb.texas.gov/publications/reports/numbered_reports/doc/R358/Report%20358%20Northern%20Edwards.pdf?d=1503601352574.
- Kelley, V.A., Ewing, J., Jones, T.L., Young, S.C., Deeds, N., and Hamlin, S., 2014, Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers Draft Final Model Report (August 2014), 990 p., http://www.twdb.texas.gov/groundwater/models/gam/trnt_n/Final_NTGAM_Vol%2016%20Aug%202014_Report.pdf?d=1503601407956.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., http://www.nap.edu/catalog.php?record_id=11972.
- Niswonger, R.G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, a Newton formulation for MODFLOW-2005: United States Geological Survey, Techniques and Methods 6-A37, 44 p.
- Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., and Hughes, J.D., 2013, MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation: U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66 p.
- Shi, J., Boghici, R., Kohlrenken, W., and Hutchison, W.R., 2016, Numerical Model Report: Minor Aquifers of the Llano Uplift Region of Texas (Marble Falls, Ellenburger-San Saba, and Hickory). Texas Water Development Board, November 2016, 435p.

January 19, 2018 Page 62 of 102

http://www.twdb.texas.gov/groundwater/models/gam/llano/Llano Uplift Numeri cal Model Report Final.pdf?d=1503601525245.

Texas Water Code, 2011, http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf.

January 19, 2018 Page 63 of 102

Appendix A

Comparison between Desired Future Conditions and Simulated Drawdowns for the Trinity and Woodbine Aquifers

Drawdown values for the Trinity and Woodbine aquifers between 2009 and 2070 were based on the simulated head values at individual model cells extracted from predictive simulation head file submitted by Groundwater Management Area 8.

The Paluxy, Glen Rose, Twin Mountains, Travis Peak, Hensell, Hosston, and Antlers are subunits of the Trinity Aquifer. These subunits and Woodbine Aquifer exist in both outcrop and downdip areas (Figures 1 through 8). Kelley and others (2014) further divided these aquifers into five (5) regions, each with unique aquifer combinations and properties (table below and Figures 1 through 8).

Model Layer	Region 1	Region 2	Region 3	Region 4	Reg	ion 5			
2		Woodb	ine		Woodbine (no sand)				
3			Wash	ita/Fredericksburg					
4			Paluxy		Pah	uxy (no sand)			
5				Glen Rose		-			
6	Antlers	Providence of the Control of the Con		Hensell		Hensell			
7		Twin Mountains	Travis Peal	Pearsall/Sligo	Travis Peak	Pearsall/Sligo			
8		Mountains	and the second second	Hosston		Hosston			

Vertically, the Trinity and Woodbine aquifers could contain multiple model layers and some of the model cells are pass-through cells with a thickness of one foot. To account for variable model cells from multiple model layers for the same aquifer, Beach and others (2016) adopted a method presented by Van Kelley of INTERA, Inc., which calculated a single composite head from multiple model cells with each adjusted by transmissivity. This composite head took both the head and hydraulic transmissivity at each cell into calculation, as shown in the following equation:

$$Hc = \frac{\sum_{i=UL}^{LL} T_i H_i}{\sum_{i=UL}^{LL} T_i}$$

Where:

 H_C = Composite Head (feet above mean sealevel)

 T_i = Transmissivity of model layer i (square feet per day)

 H_i = Head of model layer i (feet above mean sealevel)

January 19, 2018 Page 64 of 102

LL = Lowest model layer representing the regional aquiferUL = Uppermost model layer representing the regional aquifer.

The average head for the same aquifer in a county (*Hc_County*) was then calculated using the following equation:

$$Hc County = \frac{\sum_{i=1}^{n} Hc_{i}}{n}$$

Where:

 H_{Ci} = Composite Head at a lateral location as defined in last step (feet above mean sealevel)

n = Total lateral (row, column) locations of an aquifer in a county.

Drawdown of the aquifer in a county (*DD_County*) was calculated using the following equation:

$$DD_County = Hc_County_{2009} - Hc_County_{2070}$$

Where:

 Hc_County_{2009} = Average head of an aquifer in a county in 2009 as defined above (feet above mean sea level) Hc_County_{2070} = Average head of an aquifer in a county in 2070 as defined above (feet above mean sea level).

Model cells with head values below the cell bottom in 2009 were excluded from the calculation. Also, head was set at the cell bottom if it fell below the cell bottom at 2070.

In comparison with a simple average calculation based on total model cell count, use of composite head gives less weight to cells with lower transmissivity values (such as pass-through cells, cells with low saturation in outcrop area, or cells with lower hydraulic conductivity) in head and drawdown calculation.

January 19, 2018 Page 65 of 102

Per Groundwater Management Area 8, a desired future condition was met if the simulated drawdown from the desired future condition was within five percent or five feet. Using the head output file submitted by Groundwater Management Area 8 and the method described above, the TWDB calculated the drawdowns (Tables A1 and A2) and performed the comparison against the corresponding desired future conditions by county (Tables A3, A4, A5, and A6). The review by the TWDB indicates that the predictive simulation meets the desired future conditions (Tables A7 and A8).

January 19, 2018 Page 66 of 102

TABLE A1. SIMULATED DRAWDOWN VALUES OF THE TRINITY AND WOODBINE AQUIFERS FOR COUNTIES NOT IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. DRAWDOWNS ARE IN FEET.

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Bell	_	19	83		294	137	330	_
Bosque	_	6	49	_	167	129	201	<u> </u>
Brown	_	_	2	<u> </u>	1	1	1	2
Burnet	_	_	2	_	16	7	20	<u> </u>
Callahan	_	_	_	_		<u> </u>	<u> </u>	1
Collin	459	705	339	526	_	_	<u> </u>	570
Comanche	T -	_	1	_	2	2	3	9
Cooke	2	_	_	<u> </u>	_	_	_	179
Coryell	_	7	14		100	66	130	_
Dallas	123	324	263	463	350	332	351	-
Delta	_	264	181	_	186	<u> </u>	_	_
Denton	19	552	349	716	_	_	_	398
Eastland	_	_	 		_	<u> </u>	_	3
Ellis	61	107	194	333	305	263	310	
Erath	_	1	5	6	19	11	31	11
Falls	<u> </u>	144	215	_	460	271	465	<u> </u>
Fannin	247	688	280	372	269	<u> </u>	<u> </u>	251
Grayson	157	922	337	417		_	_	348
Hamilton	_	2	4	_	24	13	35	<u> </u>
Hill	16	38	133		299	186	337	
Hunt	598	586	299	370	324	_	_	_
Johnson	3	-61	58	156	184	126	235	
Kaufman	208	276	269	381	323	309	295	_
Lamar	38	93	97	_	114	-	1 -	122
Lampasas	<u> </u>	_	1	_	6	1	11	1 -
Limestone		178	271	 	393	183	404	<u> </u>
McLennan	6	35	133	_	468	220	542	_
Milam	_	_	212	-	344	229	345	1 -
Mills	_	1	1	_	7	- 2	13	—
Navarro	92	119	232		291	254	291	T -
Red River	2	21	36	_	51	-	<u> </u>	13
Rockwall	243	401	311	426	<u> </u>	<u> </u>	_	T -
Somervell	_	1	4	31	52	26	83	T -
Tarrant	6	101	148	315	 	 	_	149

January 19, 2018 Page 67 of 102

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Taylor	_	_	_	_	_	_	-	0
Travis	_		85	<u> </u>	142	51	148	_
Williamson	_	_	76	<u> </u>	172	73	176	

^{-:} Not available.

January 19, 2018 Page 68 of 102

TABLE A2. SIMULATED DRAWDOWN VALUES OF THE TRINITY AQUIFER FOR COUNTIES IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. DRAWDOWNS ARE IN FEET.

County	Paluxy	Glen Rose	Twin Mountains	Antiers
Hood (outcrop)	5	7	4	
Hood (downdip)	_	27	46	_
Montague (outcrop)	_		_	18
Montague (downdip)	_			_
Parker (outcrop)	5	10	1	11
Parker (downdip)	1	28	46	_
Wise (outcrop)	_	_	_	35
Wise (downdip)	_	_	_	142

^{—:} Not available.

January 19, 2018 Page 69 of 102

TABLE A3. RELATIVE DIFFERENCE BETWEEN SIMULATED DRAWDOWNS AND DESIRED FUTURE CONDITIONS OF THE TRINITY AND WOODBINE AQUIFERS FOR COUNTIES NOT IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. VALUES GREATER THAN THE ERROR TOLERANCE OF FIVE PERCENT ARE HIGHLIGHTED.

County	Woodbine	Paluxy	Glen	Twin	Travis	Hensell	Hosston	Antlers
			Rose	Mountains	Peak			
Bell	_	0%	0%	_	-2%	0%	0%	8-8
Bosque		0%	0%	_	0%	0%	0%	
Brown	_		0%	775	⊚ 0%	0%	0%	0%
Burnet		_	0%	-	0%	0%	0%	
Callahan	_	_	_		_	_		0%
Collin	0%	0%	0%	0%	_	_	_	0%
Comanche		_	0%	-	0%	0%	0%	0%
Cooke	0%	_	_	200	_	_	_	2%
Coryell		0%	0%	-	1%	0%	0%	-
Dallas	0%	0%	0%	0%	1%	0%	0%	-
Delta	_	0%	0%	_	0%	-	=	_
Denton	-16%	0%	0%	0%	_	5 - 5	<u>-</u> 3	1%
Eastland	_	_	11 >	_	3 4- 07	9-9		0%
Ellis	0%	0%	0%	0%	1%	0%	0%	_
Erath	_	0%	0%	0%	0%	0%	0%	-9%
Falls	_	0%	0%	_	0%	0%	0%	_
Fannin	0%	0%	0%	0%	0%	_	_	0%
Grayson	-2%	0%	0%	0%	_	— T	_	0%
Hamilton	_	0%	0%	-	0%	0%	0%	
Hill	-25%	0%	0%	_	0%	0%	0%	_
Hunt	0%	0%	0%	0%	0%	_	_	_
Johnson	33%	0%	0%	0%	3%	0%	0%	-
Kaufman	0%	0%	0%	0%	0%	0%	0%	-
Lamar	0%	0%	0%	_	0%	_	_	0%
Lampasas	_	_	0%	_	0%	0%	0%	<u> </u>
Limestone	_	0%	0%	_	0%	0%	0%	_
McLen—n	0%	0%	0%	_	-1%	0%	0%	-
Milam	_	_	0%		0%	0%	0%	
Mills	_	0%	0%	-	0%	0%	0%	-
—varro	0%	0%	0%	<u> </u>	0%	0%	0%	
Red River	0%	0%	0%	 	0%	_	_	0%
Rockwall	0%	0%	0%	0%	<u> </u>	 	_	

January 19, 2018 Page 70 of 102

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Somervell	_	0%	0%	0%	2%	0%	0%	_
Tarrant	-17%	0%	0%	0%	_	_		1%
Taylor	_	_		_	_	_	_	0%
Travis		_	0%	_	1%	2%	1%	_
Williamson	_	_	-1%	-	-1%	-1%	-1%	_

^{—:} Not available.

January 19, 2018 Page 71 of 102

TABLE A4. RELATIVE DIFFERENCE BETWEEN SIMULATED DRAWDOWNS AND DESIRED FUTURE CONDITIONS OF THE TRINITY AQUIFER FOR COUNTIES IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. VALUES GREATER THAN THE ERROR TOLERANCE OF FIVE PERCENT ARE HIGHLIGHTED.

County	Paluxy	Glen Rose	Twin Mountains	Antlers
Hood (outcrop)	0%	0%	0%	_
Hood (downdip)	_	-4%	0%	_
Montague (outcrop)	_	_	_	0%
Montague (downdip)	_	_	_	
Parker (outcrop)	0%	0%	0%	0%
Parker (downdip)	0%	0%	0%	_
Wise (outcrop)	_	_	_	3%
Wise (downdip)	59	_	_	0%

^{—:} Not available.

January 19, 2018 Page 72 of 102

TABLE A5.

DIFFERENCE BETWEEN SIMULATED DRAWDOWNS AND DESIRED FUTURE CONDITIONS OF THE TRINITY AND WOODBINE AQUIFERS FOR COUNTIES NOT IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. VALUES GREATER THAN THE ERROR TOLERANCE OF FIVE FEET ARE HIGHLIGHTED.

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Bell	_	0	0	_	-6	0	0	
Bosque		0	0	II —	0	0	0	_
Brown	_	_	0	_	0	0	0	0
Burnet	_	_	0		0	0	0	30
Callahan	=	_		_	_	_	_	0
Collin	0	0	0	0	_	_	-	0
Comanche	_	_	0	_	0	0	0	0
Cooke	0	_	_	_	_	-	_	3
Coryell	_	0	0	_	1	0	0	_
Dallas	0	0	0	0	2	0	0	_
Delta	_	0	0	_	0	_	_	_
Denton	-3	0	0	0	_	<u> </u>	_	3
Eastland	_	_	_		_	_	_	0
Ellis	0	0	0	0	4	0	0	_
Erath	_	0	0	0	0	0	0	-1
Falls		0	0	_	-2	0	0	
Fannin	0	0	0	0	0	_		0
Grayson	-3	0	0	0	_	_	_	0
Hamilton	_	0	0	_	0	0	0	
Hill	-4	0	0	_	1	0	0	_
Hunt	0	0	0	0	0	_	_	=
Johnson	1	0	0	0	5	0	0	_
Kaufman	0	0	0	0	0	0	0	_
Lamar	0	0	0	_	0	_	_	0
Lampasas	_	-	0	_	0	0	0	-
Limestone	_	0	0	_	1	0	0	===
McLennan	0	0	0	-	-3	0	0	_
Milam	_	_	0	_	-1	0	0	7,70
Mills	_	0	0	_	0	0	0	-
Navarro	0	0	0	_	1	0	0	
Red River	0	0	0		0	-		0
Rockwall	0	0	0	0	<u> </u>	577	1000	_

January 19, 2018 Page 73 of 102

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Somervell	_	0	0	0	1	0	0	
Tarrant	-1	0	0	0	_	_	_	1
Taylor	-	_		_	_	_	-	0
Travis		-	0		1	1	2	_
Williamson		_	-1		-1	-1	-1	_

^{—:} Not available.

January 19, 2018 Page 74 of 102

TABLE A6.

DIFFERENCE BETWEEN SIMULATED DRAWDOWNS AND DESIRED FUTURE CONDITIONS OF THE TRINITY AQUIFER FOR COUNTIES IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. NO VALUES ARE GREATER THAN THE ERROR TOLERANCE OF FIVE FEET.

County	Paluxy	Glen Rose	Twin Mountains	Antlers
Hood (outcrop)	0	0	0	_ 0
Hood (downdip)	_	-1	0	_
Montague (outcrop)	_	_		0
Montague (downdip)	_	-	_	_
Parker (outcrop)	0	0	0	0
Parker (downdip)	0	0	0	
Wise (outcrop)		<u> </u>	_	1
Wise (downdip)	2 –	_	_	0

^{-:} Not available.

January 19, 2018 Page 75 of 102

TABLE A7. COMPARISON OF SIMULATED DRAWDOWNS WITH THE DESIRED FUTURE CONDITIONS OF THE TRINITY AND WOODBINE AQUIFERS FOR COUNTIES NOT IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. NO VALUES ARE GREATER THAN BOTH ERROR TOLERRANCES OF FIVE PERCENT AND FIVE FEET AT THE SAME TIME. THUS, PREDICTIVE SIMULATION MEETS ALL DESIRED FUTURE CONDITIONS.

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Bell	_	MEET	MEET	_	MEET	MEET	MEET	-
Bosque		MEET	MEET	_	MEET	MEET	MEET	_
Brown	_	_	MEET	_	MEET	MEET	MEET	MEET
Burnet	_	_	MEET	_	MEET	MEET	MEET	_
Callahan	_	_	_		_	-	_	MEET
Collin	MEET	MEET	MEET	MEET	_	_	_	MEET
Comanche		_	MEET	_	MEET	MEET	MEET	MEET
Cooke	MEET	_	_	_	_	_	-	MEET
Coryell	_	MEET	MEET	_	MEET	MEET	MEET	_
Dallas	MEET	MEET	MEET	MEET	MEET	MEET	MEET	_
Delta	_	MEET	MEET	_	MEET	— iži		-
Denton	MEET	MEET	MEET	MEET	_	_	_	MEET
Eastland		_	_	_	_	_	_	MEET
Ellis	MEET	MEET	MEET	MEET	MEET	MEET	MEET	
Erath	_	MEET	MEET	MEET	MEET	MEET	MEET	MEET
Falls	_	MEET	MEET	_	MEET	MEET	MEET	_
Fannin	MEET	MEET	MEET	MEET	MEET	_	_	MEET
Grayson	MEET	MEET	MEET	MEET		_	-	MEET
Hamilton	_	MEET	MEET	_	MEET	MEET	MEET	_
Hill	MEET	MEET	MEET	_	MEET	MEET	MEET	_
Hunt	MEET	MEET	MEET	MEET	MEET	_		-
Johnson	MEET	MEET	MEET	MEET	MEET	MEET	MEET	1000
Kaufman	MEET	MEET	MEET	MEET	MEET	MEET	MEET	-
Lamar	MEET	MEET	MEET	_	MEET	-	_	MEET
Lampasas	_	_	MEET	_	MEET	MEET	MEET	_
Limestone	_	MEET	MEET	_	MEET	MEET	MEET	-
McLennan	MEET	MEET	MEET	-	MEET	MEET	MEET	_
Milam	_	_	MEET	_	MEET	MEET	MEET	_
Mills	_	MEET	MEET	_	MEET	MEET	MEET	2-24
Navarro	меет	MEET	MEET	_	MEET	MEET	MEET	1200

January 19, 2018 Page 76 of 102

County	Woodbine	Paluxy	Glen Rose	Twin Mountains	Travis Peak	Hensell	Hosston	Antlers
Red River	MEET	MEET	MEET	8 -	MEET	_	_	MEET
Rockwall	MEET	MEET	MEET	MEET		_	_	_
Somervell	_	MEET	MEET	MEET	MEET	MEET	MEET	
Tarrant	MEET	MEET	MEET	MEET	_	_	_	MEET
Taylor			_	_	- 00	_	_	MEET
Travis	_	_	MEET	_	MEET	MEET	MEET	
Williamson	_	_	MEET	_	MEET	меет	MEET	_

^{-:} Not available.

January 19, 2018 Page 77 of 102

TABLE A8.

COMPARISON OF SIMULATED DRAWDOWNS WITH THE DESIRED FUTURE CONDITIONS OF THE TRINITY AQUIFER FOR COUNTIES IN THE UPPER TRINITY GROUNDWATER CONSERVATION DISTRICT. NO VALUES ARE GREATER THAN BOTH ERROR TOLERRANCES OF FIVE PERCENT AND FIVE FEET AT THE SAME TIME. THUS, PREDICTIVE SIMULATION MEETS ALL DESIRED FUTURE CONDITIONS.

County	Paluxy	Glen Rose	Twin Mountains	Antlers
Hood (outcrop)	MEET	MEET	MEET	_
Hood (downdip)		MEET	MEET	_
Montague (outcrop)			_	MEET
Montague (downdip)			_	
Parker (outcrop)	MEET	MEET	MEET	MEET
Parker (downdip)	MEET	MEET	MEET	_
Wise (outcrop)	_	_	_	MEET
Wise (downdip)	_	_	<u> </u>	MEET

^{-:} Not available.

January 19, 2018 Page 78 of 102

Appendix B

Comparison between Desired Future Conditions and Simulated Saturated Thickness for the Marble Falls, Ellenburger-San Saba, and Hickory Aquifers in Brown, Burnet, Lampasas, and Mills Counties

The predictive simulation used to evaluate the desired future conditions and the modeled available groundwater values for the Marble Falls, Ellenburger-San Saba, and Hickory aquifers in Brown, Burnet, Lampasas, and Mills counties within Groundwater Management Area 8 involves rewriting all relevant MODFLOW-USG packages to reflect the predictive simulation. The initial pumping for the predictive simulation was based on the last stress period of the groundwater availability model. In its clarification, Groundwater Management Area 8 also provided estimated pumping to use for the predictive simulation by TWDB (Table B1).

These pumping values from Groundwater Management Area 8 are more than the pumpage from the last stress period of the groundwater availability model. This surplus pumping for each aquifer was redistributed uniformly in each county according to its modeled extent.

The head file from the model output was used to calculate the remaining saturated thickness (ST) within the modeled extent for each aquifer between 2009 and 2070 using the following equation:

$$ST = \frac{\sum_{i=1}^{n} (h2070_{i} - e_{i})}{\sum_{i=1}^{n} (h2009_{i} - e_{i})}$$

Where:

n = Total model cells in a county

 $h2009_i$ = Head of 2009 at model cell i (feet)

 $h2070_i$ = Head of 2070 at model cell i (feet)

 e_i = Bottom elevation of model cell i (feet).

Model cells with head values below the cell bottom in 2009 were excluded from the calculation. Also, head was set at the cell bottom if it fell below the cell bottom at 2070.

The comparison between the simulated remaining saturated thickness and the desired future conditions is presented in <u>Table B2</u>. <u>Table B2</u> indicates that the predictive simulation meets the desired future conditions of the Marble Falls, Ellenburger-San Saba, and Hickory aquifers in Brown, Burnet, Lampasas, and Mills counties.

January 19, 2018 Page 80 of 102

TABLE B1. GROUNDWATER PUMPING RATES FOR THE MARBLE FALLS, ELLENBURGER-SAN SABA, AND HICKORY AQUIFERS IN BROWN, BURNET, LAMPASAS, AND MILLS COUNTIES PROVIDED BY GROUNDWATER MNAAGMENT AREA 8.

County	Aquifer	2010 to 2070 (acre-feet per year)		
Burnet	Marble Falls	2,736		
Lampasas	Marble Falls	2,837		
Brown	Marble Falls	25		
Mills	Marble Falls	25		
Burnet	Ellenburger-San Saba	10,827		
Lampasas	Ellenburger-San Saba	2,593		
Brown	Ellenburger-San Saba	131		
Mills	Ellenburger-San Saba	499		
Burnet	Hickory	3,413		
Lampasas	Hickory	113		
Brown	Hickory	12		
Mills	Hickory	36		

January 19, 2018 Page 81 of 102

TABLE B2. COMPARISON BETWEEN SIMULATED REMAINING AQUIFER SATURATED THICKESS AND DESIRED FUTURE CONDITIONS OF MARBLE FALLS, ELLENBURGER-SAN SABA, AND HICKORY AQUIFERS IN BROWN, BURNET, LAMPASAS, AND MILLS COUNTIES.

County	Aquifer	Remaining Aquifer Saturated Thickness Defined by Desired Future Condition	Simulated Remaining Aquifer Saturated Thickness	Is Desired Future Condition Met?
Brown	Marble Falls	at least 90%	99.8%	Yes
Brown	Ellenburger-San Saba	at least 90%	99.9%	Yes
Brown	Hickory	at least 90%	99.9%	Yes
Burnet	Marble Falls	at least 90%	98.8%	Yes
Burnet	Ellenburger-San Saba	at least 90%	99.3%	Yes
Burnet	Hickory	at least 90%	99.5%	Yes
Lampasas	Marble Falls	at least 90%	98.2%	Yes
Lampasas	Ellenburger-San Saba	at least 90%	99.0%	Yes
Lampasas	Hickory	at least 90%	99.5%	Yes
Mills	Marble Falls	at least 90%	99.5%	Yes
Mills	Ellenburger-San Saba	at least 90%	99.7%	Yes
Mills	Hickory	at least 90%	99.8%	Yes

January 19, 2018 Page 82 of 102

Appendix C

Summary of Dry Model Cell Count for the Trinity and Woodbine Aquifers

January 19, 2018 Page 83 of 102

TABLE C1. SUMMARY OF DRY MODEL CELLS FOR THE TRINITY AQUIFER (PALUXY) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Collin	Dallas	Denton	Johnson	Tarrant
Total Active Official Aquifer Model Cells	12,062	14,532	3,520	11,627	15,389
2009 (baseline)	0	0	0	17	3
2010	0	0	9	0	3
2011	1	0	49	0	3
2012	4	0	83	0	17
2013	8	0	140	0	47
2014	35	0	196	0	91
2015	49	0	264	0	146
2016	64	0	306	0	209
2017	72	0	349	0	291
2018	83	0	385	0	373
2019	93	0	428	0	460
2020	99	0	482	0	555
2021	109	0	550	0	620
2022	115	0	622	0	684
2023	125	0	695	0	746
2024	129	0	780	0	802
2025	138	0	879	0	862
2026	147	0	957	0	919
2027	151	0	1,018	0	964
2028	159	0	1,087	0	995
2029	166	0	1,171	0	1,038
2030	173	0	1,262	0	1,072
2031	176	0	1,326	0	1,101
2032	180	0	1,379	0	1,137
2033	187	0	1,420	0	1,156
2034	193	0	1,461	0	1,194
2035	201	0	1,492	0	1,224
2036	204	0	1,520	0	1,240
2037	209	0	1,554	0	1,274
2038	212	0	1,584	0	1,292
2039	215	0	1,607	0	1,317
2040	217	0	1,627	0	1,347
2041	224	0	1,659	0	1,362
2042	228	0	1,682	0	1,377

January 19, 2018 Page 84 of 102

Year	Collin	Dallas	Denton	Johnson	Tarrant
2043	235	0	1,710	0	1,409
2044	239	0	1,735	0	1,425
2045	242	0	1,755	0	1,438
2046	247	0	1,777	0	1,455
2047	250	0	1,790	0	1,477
2048	251	0	1,807	0	1,497
2049	253	0	1,823	0	1,517
2050	254	0	1,834	0	1,530
2051	258	2	1,847	0	1,539
2052	264	2	1,860	0	1,562
2053	266	2	1,874	0	1,585
2054	270	3	1,883	0	1,594
2055	272	3	1,893	0	1,606
2056	275	3	1,902	0	1,621
2057	276	3	1,923	0	1,634
2058	280	4	1,929	0	1,650
2059	282	4	1,934	0	1,666
2060	286	4	1,943	0	1,679
2061	288	4	1,947	0	1,693
2062	288	4	1,961	0	1,701
2063	290	5	1,973	0	1,712
2064	291	5	1,977	0	1,726
2065	292	5	1,988	0	1,739
2066	295	5	1,996	0	1,752
2067	297	6	2,002	0	1,760
2068	300	7	2,009	0	1,769
2069	304	7	2,017	0	1,778
2070	305	7	2,024	0	1,784

January 19, 2018 Page 85 of 102

TABLE C2. SUMMARY OF DRY MODEL CELLS FOR THE TRINITY AQUIFER (GLEN ROSE) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Bell	Burnet	Coryell	Erath	Hamilton	Hood	Johnson	Mills	Parker	Travis
Total Active Official Aquifer Model Cells	23,737	22,534	41,647	20,905	36,944	14,461	12,342	10,615	11,389	14,552
2009 (baseline)	0	0	11	0	0	0	15	0	8	25
2010	0	0	11	0	0	0	15	0	9	29
2011	0	0	11	0	0	0	15	0	12	29
2012	0	0	11	0	0	0	15	0	15	29
2013	0	0	11	1	0	0	15	1	19	29
2014	0	1	11	1	0	1	15	1	22	31
2015	0	1	11	1	0	1	15	1	23	32
2016	0	1	12	1	0	1	15	1	30	33
2017	0	1	12	2	0	2	15	1	37	34
2018	0	1	12	3	0	2	15	1	38	34
2019	0	1	14	3	0	2	16	1	44	34
2020	0	1	14	3	0	2	16	1	46	34
2021	0	1	14	3	0	3	16	1	48	35
2022	0	1	14	3	0	3	16	1	49	38
2023	0	1	14	3	0	3	17	1	54	41
2024	0	1	15	3	0	3	17	1	58	45
2025	0	1	15	3	0	3	17	1	65	47
2026	0	1	15	3	0	5	19	1	72	48
2027	0	1	15	4	0	5	21	1	78	50
2028	0	1	15	4	0	5	21	1	82	51
2029	0 ,	1	15	4	0	6	22	1	84	51
2030	0	1	15	4	0	6	22	1	90	54
2031	0	1	15	8	0	6	22	1	99	54
2032	0	1	15	8	0	8	23	1	103	55
2033	0	1	15	8	0	8	23	1	105	56
2034	0	1	15	9	0	9	23	1	108	56
2035	0	1	15	9	0	10	23	1	109	57
2036	0	1	15	9	0	12	23	1	110	58
2037	0	1	15	9	0	13	23	1	110	58
2038	0	1	15	9	0	14	23	1	113	59

January 19, 2018 Page 86 of 102

Year	Bell	Burnet	Coryell	Erath	Hamilton	Hood	Johnson	Mills	Parker	Travis
2039	0	2	15	9	0	14	23	1	113	59
2040	0	2	15	9	0	14	23	1	116	60
2041	0	2	15	9	0	16	23	1	119	60
2042	0	2	15	10	1	16	23	1	122	61
2043	0	2	15	10	2	16	23	1	124	61
2044	0	2	15	10	2	18	24	1 .	125	62
2045	0	2	15	10	2	18	25	1	131	63
2046	0	2	15	10	2	18	25	1	131	63
2047	0	2	16	10	3	18	25	1	134	64
2048	0	2	16	10	4	18	26	1	137	64
2049	0	2	16	11	4	20	26	1	139	65
2050	0	2	16	11	4	22	26	1	143	65
2051	0	2	16	12	5	22	29	1	144	66
2052	1	2	16	12	5	22	31	1	147	66
2053	3	2	16	12	7	24	32	1	149	67
2054	4	2	17	12	7	27	32	1	151	67
2055	4	2	17	12	. 7	27	34	1	152	67
2056	4	2	17	12	7	30	34	1	152	68
2057	6	2	17	13	7	31_	34	1	156	69
2058	7	2	17	13	7	31	34	1	159	69
2059	7	2	17	13	7	31	34	1	164	69
2060	7	2	17	13	8	34	34	1	166	69
2061	7	2	17	13	8	34	34	1	165	69
2062	7	2	17	13	9	35	34	1	168	69
2063	7	2	17	14	9	36	34	1	168	69
2064	7	2	17 -	16	9	36	34	1	172	69
2065	- 8	2	17	16	9	36	34	2	176	69
2066	8	2	17	16	10	36	34	2	180	69
2067	8	3	17	19	10	36	34	2	184	69
2068	8	3	17	19	11	38	34	2	188	69
2069	8	3	17	20	11	38	34	2	191	69
2070	8	4	17	20	11	41	34	2	194	69

January 19, 2018 Page 87 of 102

TABLE C3. SUMMARY OF DRY MODEL CELLS FOR THE TRINITY AQUIFER (TWIN MOUNTAINS) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Denton	Erath	Hood	Johnson	Parker	Tarrant
Total Active Official Aquifer Model Cells	10,560	46,642	37,444	6,816	30,830	40,713
2009 (baseline)	0	20	0	0	0	0
2010	0	27	0	0	0	0
2011	0	33	0	0	0	0
2012	0	40	0	0	0	0
2013	0	44	0	0	0	0
2014	0	48	0	0	0	0
2015	0	53	0	0	0	0
2016	0	56	0	0	0	0
2017	0	61	0	0	0	0
2018	0	65	0	0	0	0
2019	0	68	1	0	0	0
2020	0	71	1	0	0	0
2021	0	76	1	0	1	0
2022	0	80	1	0	4	0
2023	0	81	1	0	8	2
2024	0	85	4	0	13	6
2025	0	88	7	0	16	10
2026	0	91	15	0	17	16
2027	0	94	18	0	18	25
2028	0	97	23	0	18	32
2029	0	101	28	0	23	36
2030	0	107	33	0	24	41
2031	1	108	41	0	25	48
2032	1	111	46	0	25	53
2033	1	119	56	0	26	56
2034	1	122	64	0	27	66
2035	1	123	68	0	27	74
2036	2	126	75	0	29	93
2037	2	131	82	0	29	127
2038	2	134	95	0	30	170
2039	2	136	100	0	31	231
2040	2	137	114	0	32	289
2041	2	143	129	0	32	354

January 19, 2018 Page 88 of 102

Year	Denton	Erath	Hood	Johnson	Parker	Tarrant
2042	2	146	137	0	32	426
2043	2	150	150	0	32	500
2044	2	154	165	0	32	587
2045	3	157	178	0	34	648
2046	4	161	194	0	35	711
2047	4	167	212	0	36	767
2048	4	171	228	0	38	832
2049	5	174	242	0	38	889
2050	7	176	251	0	38	930
2051	8	178	262	0	38	996
2052	8	181	272	2	38	1,057
2053	9	184	282	7	38	1,114
2054	9	186	297	13	39	1,169
2055	9	189	313	19	40	1,234
2056	10	194	320	26	40	1,303
2057	11	196	330	33	41	1,366
2058	14	207	336	41	42	1,435
2059	14	211	341	49	42	1,508
2060	. 15	221	351	57	42	1,595
2061	16	221	363	67	43	1,681
2062	. 17	223	368	75	43	1,783
2063	18	224	375	83	43	1,899
2064	20	228	385	94	45	1,988
2065	22	229	393	105	46	2,104
2066	23	231	401	115	47	2,188
2067	24	233	408	130	47	2,285
2068	27	236	416	139	47	2,364
2069	31	240	424	155	47	2,468
2070	35	242	429	168	47	2,553

January 19, 2018 Page 89 of 102

TABLE C4. SUMMARY OF DRY MODEL CELLS FOR THE TRINITY AQUIFER (TRAVIS PEAK) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Burnet	Comanche	Erath	Johnson	Lampasas	McLennan	Travis
Total Active Official Aquifer Model Cells	46,474	78,137	39,220	28,386	63,905	50,973	30,318
2009 (baseline)	217	0	0	0	1	0	57
2010	176	0	1	0	1	0 ,	59
2011	186	0	1	0	1	0	60
2012	218	0	1	0	1	0	63
2013	249	0	1	0	1	0	65
2014	271	0	1	0	1	0	68
2015	291	0	1	0	1	0	68
2016	314	0	3	0	1	0	70
2017	331	0	4	0	1	0 ,	70
2018	345	0	5	0	1	0	71
2019	363	0	6	0	1	0	72
2020	378	0	11	0	1	0	72
2021	394	0	17	0	1	0	74
2022	400	0	29	0	1	0	74
2023	414	0	59	0	1	0	76
2024	424	0	93	0	1	0	77
2025	438	1	114	0	1	0	77
2026	450	9	130	0	1	0	79
2027	463	14	160	0	1	0	80
2028	474	14	183	0	1	0	80
2029	483	18	205	0	1	0	82
2030	494	30	238	0	1	0	82
2031	505	34	266	0	1	0	83
2032	512	35	299	0	1	0	83
2033	520	41	328	0	1	0	84
2034	527	54	343	0	1	0	85
2035	533	67	351	0	1	. 0	85
2036	543	72	370	0	1	0	87
2037	545	77	398	0	1	0	88
2038	554	85	414	0	1	0	88
2039	564	94	421	0	1	0	90
2040	571	103	435	0	1	1	90
2041	579	111	453	0	1	1	91
2042	588	116	481	0	1	1	92

GAM Run 17-029 MAG: Modeled Available Groundwater for the Trinity, Woodbine, Edwards (Balcones Fault Zone), Marble Falls, Ellenburger-San Saba, and Hickory Aquifers in Groundwater Management Area 8

January 19, 2018 Page 90 of 102

Year	Burnet	Comanche	Erath	Johnson	Lampasas	McLennan	Travis
2043	599	116	497	0	1	1	93
2044	604	121	507	, 0	1	1	93
2045	609	128	520	0	1	1	94
2046	618	138	538	0	1	1	95
2047	623	146	557	0	1	2	97
2048	629	152	590	0	1	2	97
2049	634	160	606	0	1	2	98
2050	640	166	620	0	1	2	99
2051	644	172	638	1	1	2	100
2052	648	180	651	1	1	2	100
2053	654	186	665	1	1	2	101
2054	658	190	678	1	1	2	102
2055	670	194	690	1	1	2	103
2056	675	196	699	1	1	2	103
2057	678	199	711	1	1	2	104
2058	692	206	723	1	1	2	105
2059	702	216	746	1	1	2	106
2060	717	222	774	1	1	2	106
2061	714	225	776	1	1	2	106
2062	719	227	790	1	1	2	107
2063	723	231	799	1	1	3	107
2064	728	235	813	2	1	3	109
2065	730	238	822	3	1	3	109
2066	730	245	832	3	1	3	109
2067	734	252	841	3	1	3	110
2068	741	258	850	3	1	3	110
2069	745	264	861	6	1	3	111
2070	748	269	871	7	1	3	112

January 19, 2018 Page 91 of 102

TABLE C5. SUMMARY OF DRY MODEL CELLS FOR THE TRINITY AQUIFER (HENSELL) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Erath	Lampasas
Total Active Official Aquifer Model Cells	21,880	25,364
2009 (baseline)	0	1
2010	0	1
2011	0	1
2012	0	1
2013	0	1
2014	0	1
2015	0	1
2016	0	1
2017	0	1
2018	0	1
2019	0	1
2020	0	1
2021	0	1
2022	0	1
2023	0	1
2024	0	1
2025	0	1
2026	0	1
2027	0	1
2028	0	1
2029	0	1
2030	0	1
2031	0	1
2032	0	1
2033	0	1
2034	0	1
2035	0	1
2036	0	1
2037	0	1
2038	0	1
2039	0	1
2040	1	1
2041	1	1
2042	3	1
2043	3	1

January 19, 2018 Page 92 of 102

Year	Erath	Lampasas
2044	3	1
2045	6	1
2046	7	1
2047	7	1
2048	12	1
2049	14	1
2050	14	1
2051	18	1
2052	20	1
2053	22	1
2054	24	1
2055	25	1
2056	25	1
2057	30	1
2058	31	1
2059	35	1
2060	37	1
2061	37	1
2062	40	1
2063	42	1
2064	42	1
2065	44	1
2066	46	1
2067	46	1
2068	48	1
2069	50	1
2070	52	1

January 19, 2018 Page 93 of 102

TABLE C6. SUMMARY OF DRY MODEL CELLS FOR THE TRINITY AQUIFER (HOSSTON) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Burnet	Comanche	Erath	Johnson	McLennan	Travis
Total Active Official Aquifer Model Cells	24,354	41,062	8,464	9,462	16,991	9,480
2009 (baseline)	217	0	0	0	0	57
2010	176	0	1	0	0	59
2011	186	0	1	0	0	60
2012	218	0	1	0	0	63
2013	247	0	1	0	0	65
2014	269	0	1	0	0	68
2015	288	0	1	0	0	68
2016	310	0	1	0	0	70
2017	325	0	1	0	0	70
2018	338	0	1	0	0	71
2019	353	0	1	0	0	72
2020	368	0	1	0	0	72
2021	382	0	2	0	O	74
2022	387	0	9	0	0	74
2023	400	0	25	0	0	76
2024	409	0	51	0	0	77
2025	423	1	66	0	0	77
2026	433	9	75	0	0	79
2027	444	14	. 93	0	0	80
2028	455	14	99	0	0	80
2029	463	18	105	0	0	82
2030	473	30	111	0	0	82
2031	484	34	118	0	0	83
2032	491	35	127	0	0	83
2033	498	41	132	0	0	84
2034	505	54	138	0	0	85
2035	511	67	143	0	0	85
2036	520	72	151	0	0	87 -
2037	522	77	158	0	0	88
2038	531	85	162	0	0	88
2039	541	94	162	0	0	90
2040	547	103	166	0	1	90
2041	555	111	174	0	1	91
2042	563	116	183	0	1	92
2043	570	116	187	0	1	93

January 19, 2018 Page 94 of 102

Year	Burnet	Comanche	Erath	Johnson	McLennan	Travis
2044	575	121	192	0	1	93
2045	579	128	198	0	1	94
2046	588	138	206	0	1	95
2047	591	146	211	0	2	97
2048	597	152	219	0	2	97
2049	602	160	222	0	2	98
2050	607	166	227	0	2	99
2051	609	172	229	1	2	100
2052	613	180	232	1	2	100
2053	619	186	239	1	2	101
2054	623	190	246	1	2	102
2055	633	194	253	1	2	103
2056	637	196	259	1	2	103
2057	640	199	263	1	2	104
2058	651	206	269	1	2	105
2059	659	216	283	1	2	106
2060	673	222	294	1	2	106
2061	671	225	295	1	2	106
2062	675	227	297	1	2	107
2063	679	231	299	1	3	107
2064	684	235	305	2	3	109
2065	686	238	307	3	3	109
2066	686	245	310	3	3	109
2067	689	252	315	3	3	110
2068	696	258	317	3	3	110
2069	700	.264	320	6	3	111
2070	703	269	323	7	3	112

January 19, 2018 Page 95 of 102

OF NEW MODEL CELLS FOR THE TRINITY ADMIRER (ANTI-ERS) FROM THE REVISED PREDICTIVE SIMULATION.

Year	Collin	Comanche	Cooke	Denton	Eastland	Erath	Grayson	Montague	Parker	Tarrant	Wise
Total Active Official Aquifer	7,055	23,711	77,143	59,107	44,009	9,287	77,954	56,141	42,539	5,009	92,333
2009 (baseline)	0	123	0	0	74	0	0	0	0	0	0
2010	П	80	0	0	91	9	0	0	0	0	1
2011	С	85	0	2	94	13	0	0	0	0	2
2012	7	92	0	29	66	59	0	0	0	0	9
2013	11	66	0	95	108	34	0	0	0	1	9
2014	16	103	1	201	110	36	0	0	0	9	9
2015	22	111	2	341	111	36	0	0	0	15	80
2016	30	120	æ	200	113	36	0	0	0	28	29
2017	37	130	4	616	115	36	2	0	0	40	221
2018	44	141	7	721	117	39	9	0	1	58	372
2019	47	156	10	908	120	44	10	0	1	78	484
2020	53	167	17	901	125	48	22	0	2	94	574
2021	57	176	27	1,017	127	51	29	0	2	111	654
2022	62	186	37	1,199	130	52	36	0	2	124	741
2023	29	202	49	1,375	130	09	48	0	9	140	810
2024	71	230	64	1,543	133	74	57	0	6	151	879
2025	77	270	9/	1,692	137	81	72	0	19	158	947
2026	79	294	95	1,803	139	90	90	0	54	162	995
2027	83	327	111	1,903	149	102	101	0	84	167	1,053
2028	98	373	123	1,983	156	110	106	0	112	171	1,109
2029	06	422	140	2,056	162	128	117	0	141	179	1,180
2030	94	448	152	2,121	179	171	122	0	166	183	1,236

GAM Run 17-029 MAG: Modeled Available Groundwater for the Trinity, Woodbine, Edwards (Balcones Fault Zone), Marble Falls, Ellenburger-San Saba, and Hickory Aquifers in Groundwater Management Area 8

January 19, 2018 Page 96 of 102

Wise	1,294	1,368	1,479	1,551	1,628	1,713	1,809	1,879	1,952	2,029	2,085	2,130	2,174	2,214	2,253	2,291	2,349	2,382	2,413	2,442	2,458	2,480	1000	2,430	2,518
Tarrant	190	195	202	208	215	222	229	236	244	256	291	349	383	414	446	472	501	533	558	583	809	632	600	700	671
Parker	184	206	218	234	244	254	262	270	278	285	292	295	303	305	309	312	318	319	325	326	327	331	332		334
Montague	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Grayson	134	140	148	152	161	168	175	184	191	195	201	205	210	215	221	230	233	239	240	244	247	254	257		258
Erath	185	197	208	222	225	232	246	262	283	303	313	326	334	351	359	372	390	415	440	455	468	482	493		506
Eastland	204	221	233	236	242	249	259	282	304	321	331	344	363	380	397	412	442	453	474	505	525	548	590		619
Denton	2,180	2,244	2,299	2,364	2,436	2,517	2,623	2,708	2,788	2,879	2,951	3,038	3,119	3,189	3,251	3,336	3,405	3,465	3,524	3,589	3,633	3,688	3,745		3,788
Cooke	164	175	185	199	216	222	234	245	256	264	276	292	300	307	314	323	333	340	353	361	367	376	379		384
Comanche	478	517	554	617	699	710	771	836	865	913	957	866	1,032	1,074	1,129	1,171	1,221	1,266	1,320	1,351	1,389	1,435	1,469		1,510
Collin	96	100	103	105	110	111	113	116	121	122	123	126	128	130	131	131	136	137	139	141	141	143	146		147
Year	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053		2054

January 19, 2018 Page 97 of 102

150 1,626 402 3,948 681 564 270 0 340 754 150 1,703 407 3,981 715 578 274 0 340 788 152 1,750 411 4,028 733 606 280 1 346 817 154 1,813 416 4,028 731 627 283 1 346 817 155 1,846 424 4,115 756 637 283 1 346 872 158 1,909 428 4,152 777 646 287 1 350 898 158 1,944 434 4,153 807 711 292 1 350 953 158 2,001 448 4,260 821 70 298 1 350 966 158 2,065 450 4,295 842 792 301 1 354 <th>Year</th> <th>Collin</th> <th>Comanche</th> <th>Cooke</th> <th>Denton</th> <th>Bastland</th> <th>Erath</th> <th>Grayson</th> <th>Montague</th> <th>Parker</th> <th>Tarrant</th> <th>Wise</th>	Year	Collin	Comanche	Cooke	Denton	Bastland	Erath	Grayson	Montague	Parker	Tarrant	Wise
150 1,703 407 3,981 715 578 274 0 340 788 152 1,750 411 4,028 733 606 280 1 346 817 154 1,813 416 4,067 751 627 283 1 346 845 155 1,846 424 4,115 776 646 283 1 346 872 156 1,909 428 4,152 777 646 287 1 898 87 158 1,944 434 4,193 793 673 288 1 350 930 158 1,944 434 4,193 793 673 288 1 350 953 158 2,001 448 4,260 821 770 298 1 350 964 160 2,117 454 4,395 8,42 770 298 1,005 1	2057	150	1,626	402	3,948	681	564	270	0	340	754	2,558
152 1,750 411 4,028 733 606 280 1 346 817 154 1,813 416 4,067 751 627 283 1 346 845 156 1,846 424 4,115 776 646 287 1 350 898 158 1,909 428 4,152 777 646 287 1 350 898 158 1,944 434 4,193 793 673 288 1 350 953 158 1,968 441 4,232 807 711 292 1 350 953 158 2,001 448 4,260 821 770 298 1 350 966 160 2,117 454 4,356 863 802 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 359	2058	150	1,703	407	3,981	715	578	274	0	340	788	2,574
154 1,813 416 4,067 751 627 283 1 346 845 155 1,846 424 4,115 756 637 283 1 350 872 156 1,909 428 4,152 777 646 287 1 350 898 158 1,944 434 4,193 793 673 288 1 350 930 158 1,944 434 4,193 793 673 288 1 350 930 158 2,001 448 4,260 821 744 294 1 350 966 158 2,065 450 4,295 842 770 298 1 350 984 160 2,117 454 4,335 863 303 1 354 1,016 162 2,198 459 4,395 876 303 1 359 1,017	2059	152	1,750	411	4,028	733	909	280	1	346	817	2,586
155 1,846 424 4,115 756 637 283 1 350 872 156 1,909 428 4,152 777 646 287 1 350 898 158 1,944 434 4,193 793 673 288 1 350 930 158 1,968 441 4,232 807 711 292 1 350 953 158 2,001 448 4,260 821 744 294 1 350 966 158 2,065 450 4,295 842 770 298 1 350 984 160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 359 1,017 164 2,268 462 4,438 881 802 307 1 3	2060	154	1,813	416	4,067	751	627	283	1	346	845	2,594
156 1,909 428 4,152 777 646 287 1 350 898 158 1,944 434 4,193 793 673 288 1 350 930 158 1,968 441 4,232 807 711 292 1 350 953 158 2,001 448 4,260 821 744 294 1 350 966 158 2,065 450 4,295 842 770 298 1 350 984 160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 355 1,016 162 2,198 465 4,395 876 876 307 1 359 1,017 164 2,268 462 4,438 881 307 1 367 <td< td=""><td>2061</td><td>155</td><td>1,846</td><td>424</td><td>4,115</td><td>756</td><td>637</td><td>283</td><td>1</td><td>350</td><td>872</td><td>2,607</td></td<>	2061	155	1,846	424	4,115	756	637	283	1	350	872	2,607
158 1,944 434 4,193 793 673 288 1 350 930 158 1,968 441 4,232 807 711 292 1 350 953 158 2,001 448 4,260 821 744 294 1 350 966 158 2,065 450 4,295 842 770 298 1 352 984 160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 355 1,016 162 2,198 459 4,395 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2062	156	1,909	428	4,152	777	646	287	1	350	898	2,616
158 1,968 441 4,232 807 711 292 1 350 953 158 2,001 448 4,260 821 770 298 1 350 966 158 2,065 450 4,295 842 770 298 1 352 984 160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 355 1,016 162 2,198 459 4,360 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2063	158	1,944	434	4,193	793	673	288	1	350	930	2,629
158 2,001 448 4,260 821 744 294 1 350 966 158 2,065 450 4,295 842 770 298 1 352 984 160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 355 1,016 162 2,198 459 4,395 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2064	158	1,968	441	4,232	807	711	292	1	350	953	2,635
158 2,065 450 4,295 842 770 298 1 352 984 160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 455 4,360 863 802 303 1 355 1,016 162 2,198 459 4,395 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2065	158	2,001	448	4,260	821	744	294	1	350	996	2,642
160 2,117 454 4,335 854 792 301 1 354 1,005 162 2,154 4,56 4,360 863 802 303 1 355 1,016 162 2,198 459 4,395 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2066	158	2,065	450	4,295	842	770	298	1	352	984	2,653
162 2,154 455 4,360 863 802 303 1 355 1,016 162 2,198 459 4,395 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2067	160	2,117	454	4,335	854	792	301	1	354	1,005	2,665
162 2,198 459 4,395 876 825 303 1 359 1,017 164 2,268 462 4,438 881 846 307 1 360 1,019	2068	162	2,154	455	4,360	863	802	303	1	355	1,016	2,676
164 2,268 462 4,438 881 846 307 1 360 1,019	2069	162	2,198	459	4,395	876	825	303	1	359	1,017	2,684
	2070	164	2,268	462	4,438	881	846	307	1	360	1,019	2,691

January 19, 2018 Page 98 of 102

TABLE C8. SUMMARY OF DRY MODEL CELLS FOR THE WOODBINE AQUIFER FROM THE REVISED PREDICTIVE SIMULATION.

Year	Collin	Cooke	Denton	Fannin	Grayson	Johnson	Tarrant
Total Active Model Cells in Official Aquifer Boundary	11,762	5,700	11,991	15,443	17,911	8,407	8,901
2009 (baseline)	0	0	3	3	2	14	2
2010	0	4	3	3	3	16	2
2011	0	4	3	4	3	16	2
2012	0	4	3	4	5	16	2
2013	0	4	3	4	5	19	2
2014	0	4	3	5	6	23	2
2015	. 0	4	3	6	7	23	2
2016	0	5	3	6	8	23	2
2017	0	5	3	8	9	24	2
2018	0	5	3	9	10	26	2
2019	0	5	3	10	11	26	2
2020	0	5	3	11	11	26	2
2021	0	5	3	12	13	27	2
2022	0	5	3	12	14	28	2
2023	0	5	3	12	14	28	2
2024	0	5	4	13	14	29	2
2025	0	5	5	14	15	29	2
2026	0	5	5	15	15	30	2
2027	0	5	5	15	15	31	2
2028	0	6	5	15	15	33	2
2029	0	6	5	15	15	34	2
2030	0	6	5	15	15	36	2
2031	0	6	5	16	15	37	2
2032	0	6	5	17	16	37	2
2033	0	6	5	18	17	38	2
2034	0	6	5	20	18	40	2
2035	0	6	5	21	19	40	2
2036	0	6	5	22	19	41	2
2037	0	6	5	24	19	41	2
2038	0	6	5	25	23	42	2
2039	0	6	5	26	25	42	2
2040	0	6	5	27	25	42	2
2041	0	6	5	27	25	42	2

January 19, 2018 Page 99 of 102

Year	Collin	Cooke	Denton	Fannin	Grayson	Johnson	Tarrant
2042	0	6	5	27	27	42	2
2043	0	6	5	27	27	42	2
2044	0	6	5	28	30	42	2
2045	0	6	5	29	31	43	2
2046	0	6	6	30	31	43	2
2047	0	6	6	30	31	43	2
2048	0	6	7	32	34	43	2
2049	0	6	8	35	34	43	2
2050	0	7	8	35	35	43	2
2051	0	8	8	35	35	43	2
2052	0	8	8	37	35	43	2
2053	0	8	8	38	35	44	2
2054	0	8	8	38	37	45	2
2055	. 0	9	8	38	38	45	2
2056	0	10	8	38	38	46	2
2057	0	10	9	39	38	46	2
2058	0	10	9	42	39	50	3
2059	0	10	9	44	40	52	3
2060	0	13	9	47	41	54	3
2061	0	14	9	47	41	53	3
2062	0	14	9	47	41	. 53	3
2063	0	17	9	47	42	55	3
2064	0	20	9	47	42	55	3
2065	0	21	9	47	42	56	3
2066	1	23	9	47	42	57	3
2067	1	23	9	48	45	58	3
2068	2	24	9	49	45	59	3
2069	2	24	9	50	45	59	3
2070	2	24	9	50	45	60	3

January 19, 2018 Page 100 of 102

Appendix D

Summary of Dry Model Cell Count for the Marble Falls, Ellenburger-San Saba, and Hickory Aquifers in Brown, Burnet, Lampasas, and Mills Counties

January 19, 2018 Page 101 of 102

TABLE D1. SUMMARY OF DRY MODEL CELLS FOR THE MARBLE FALLS, ELLENBURGER-SAN SABA, AND HICKORY AQUIFERS IN BROWN, BURNET, LAMPASAS, AND MILLS COUNTIES FROM THE PREDICTIVE SIMULATION.

	Burnet	Lampasas	Burnet	Burnet
Year	Marb	le Falls	Ellenburger-San Saba	Hickory
Total Active Cells in modeled extent	10,810	7,614	13,618	14,334
2009 (baseline)	2298	611	709	111
2010	2353	631	724	112
2011	2363	638	735	112
2012	2376	641	744	113
2013	2386	642	758	113
2014	2391	646	769	113
2015	2395	650	776	113
2016	2397	653	781	115
2017	2405	654	787	117
2018	2406	657	795	117
2019	2409	659	801	118
2020	2413	661	804	118
2021	2419	661	809	118
2022	2419	661	810	118
2023	2421	661	811	118
2024	2422	662	813	119
2025	2423	662	817	120
2026	2425	664	821	120
2027	2426	665	821	120
2028	2428	666	823	120
2029	2433	667	824	122
2030	2433	669	824	123
2031	2435	670	825	123
2032	2436	671	828	123
2033	2438	671	830	123
2034	2440	672	832	124
2035	2441	673	832	124
2036	2441	675	. 833	124
2037	2442	676	833	124
2038	2442	677	834	125
2039	2443	678	837	126
2040	2443	678	837	126

January 19, 2018 Page 102 of 102

	Burnet	Lampasas	Burnet	Burnet
Year	Marbl	e Falls	Ellenburger-San Saba	Hickory
2041	2443	680	839	126
2042	2443	680	840	126
2043	2443	680	842	127
2044	2444	680	842	127
2045	2445	680	842	128
2046	2446	680	843	128
2047	2446	680	843	128
2048	2446	680	843	128
2049	2446	680	844	128
2050	2446	680	845	128
2051	2446	681	846	128
2052	2446	681	846	128
2053	2446	681	846	130
2054	2446	681	846	130
2055	2447	681	846	130
2056	2447	681	847	130
2057	2447	681	848	130
2058	2447	682	848	130
2059	2448	682	849	130
2060	2448	682	849	130
2061	2448	682	849	130
2062	2448	682	849	130
2063	2448	682	849	130
2064	2449	682	849	130
2065	2449	683	849	130
2066	2449	683	849	130
2067	2449	683	850	130
2068	2449	683	850	130
2069	2450	683	850	130
2070	2450	683	850	130

Appendix C

Total Estimated Recoverable Storage for Aquifers in Groundwater Management Area 8 (GAM TASK 13-031)


GAM TASK 13-031: TOTAL ESTIMATED RECOVERABLE STORAGE FOR AQUIFERS IN GROUNDWATER MANAGEMENT AREA 8

by Jerry Shi, Ph.D., P.G., Robert G. Bradley, P.G., Shirley Wade, Ph.D., P.G., Ian Jones, Ph.D., P.G., Roberto Anaya, P.G., and Chelsea Seiter-Weatherford Texas Water Development Board Groundwater Resources Division Jerry Shi: (512) 463-5076 January 15, 2014

The seals appearing on this document were authorized by Jianyou (Jerry) Shi, P.G. 11113, Robert G. Bradley, P.G. 707, Shirley Wade, P.G. 525, Ian Jones, P.G. 477, Roberto Anaya, P.G. 480, and Cynthia K. Ridgeway, P.G. 471 on January 15, 2014. Cynthia K. Ridgeway is the Manager of the Groundwater Availability Modeling Section and is responsible for oversight of work performed by Chelsea Seiter-Weatherford under her direct supervision.

The total estimated recoverable storage in this report was calculated as follows: the Trinity and Woodbine aquifers (Jerry Shi); Hickory, Ellenburger-San Saba, and Marble Falls aquifers (Robert G. Bradley); Brazos River Alluvium Aquifer (Shirley Wade); Edwards (Balcones Fault Zone) Aquifer (Ian Jones); Blossom Aquifer (Roberto Anaya); and Nacatoch Aquifer (Chelsea Seiter-Weatherford and Jerry Shi).

GAM TASK 13-031: TOTAL ESTIMATED RECOVERABLE STORAGE FOR AQUIFERS IN GROUNDWATER MANAGEMENT AREA 8

by Jerry Shi, Ph.D., P.G., Robert G. Bradley, P.G., Shirley Wade, Ph.D., P.G., Ian Jones, Ph.D., P.G., Roberto Anaya, P.G., and Chelsea Seiter-Weatherford Texas Water Development Board Groundwater Resources Division Groundwater Availability Modeling Section Jerry Shi: (512) 463-5076 January 15, 2014

INTRODUCTION:

As required by Texas Water Code § 36.108, the Texas Water Development Board (TWDB) shall provide the total estimated recoverable storage (TERS) for all of the aquifers in a groundwater management area as part of the process that groundwater conservation districts follow to develop its desired future conditions. This task report summarizes the calculation of the total estimated recoverable storage for the Hickory, Ellenburger-San Saba, Marble Falls, Trinity, Edwards (Balcones Fault Zone), Woodbine, Nacatoch, Blossom, and Brazos River Alluvium aquifers in Groundwater Management Area 8.

DEFINITION OF TOTAL ESTIMATED RECOVERABLE STORAGE:

The total estimated recoverable storage is defined as the estimated amount of groundwater in an aquifer that accounts for recovery scenarios that range between 25 percent and 75 percent of the porosity-adjusted aquifer volume, in other words, we assume that only 25 to 75 percent of groundwater held in an aquifer can be removed by pumping.

The total recoverable storage was estimated for the portion of each aquifer in Groundwater Management Area 8 within the official lateral aquifer boundaries as published in the TWDB Report 380 (George and others, 2011). Total estimated recoverable storage values may include a mixture of water quality types, including fresh, brackish, and saline groundwater, because the available data and the existing groundwater availability models do not permit the differentiation of different water quality types. These values do not take into account the

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 4 of 41

effects of land surface subsidence, degradation of water quality, or any changes to surface water-groundwater interaction that may occur due to pumping.

METHODS:

To estimate the total recoverable storage of an aquifer, the total storage of the aquifer within the official aquifer boundary was calculated first. The total storage is the volume of groundwater removed by pumping that completely drains the aquifer.

Aquifers can be either unconfined or confined (Figure 1). A well screened in an unconfined aquifer will have a water level equal to the water level outside the well. Thus, unconfined aquifers have water levels in the aquifers. A confined aquifer is bounded by low permeable geologic units at the top and bottom, and the aquifer is under hydraulic pressure above the ambient atmospheric pressure. The water level in a well screened in a confined aquifer will be above the top of the aquifer. As a result, calculation of total storage is different between unconfined and confined aquifers. For an unconfined aquifer, the total storage is equal to the volume of groundwater that makes the water level fall to the aquifer bottom. For a confined aquifer, the total storage contains two parts. The first part is the groundwater released from the aquifer when the water level falls from above the top of the aquifer to the top of the aquifer. The reduction of hydraulic pressure in the aquifer causes expansion of groundwater and deformation of aquifer solids. The aquifer is still fully saturated to this point. The second part, just like unconfined aquifer, is the groundwater released from the aquifer when the water level falls from the top to the bottom of the aquifer. Given the same aquifer area and water level drop, the amount of water released in the second part is much greater than the first part. The difference is quantified by two parameters: storativity related to confined aguifer and specific yield related to unconfined aguifer. For example, storativity values range from 10⁻⁵ to 10⁻³ for most confined aquifers, while the specific yield values can be 0.01 to 0.3 for most unconfined aquifers. The equations for calculating the total storage are presented below:

for unconfined aquifers

```
Total Storage = V_{drained} = Area \times S_y \times (Water Level - Bottom)
= Area \times S_y \times Aquifer Saturated Thickness
```

for confined aguifers

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 5 of 41

$$Total\ Storage = V_{confined} + V_{drained}$$

confined part

$$V_{confined} = Area \times [S \times (Water\ Level - Top)]$$
or
 $V_{confined} = Area \times [S_s \times (Top - Bottom) \times (Water\ Level - Top)]$

o unconfined part

$$V_{drained} = Area \times [S_y \times (Top - Bottom)]$$

where:

- V_{drained} = storage volume due to water draining from the formation (acre-feet)
- V_{confined} = storage volume due to elastic properties of the aquifer and water(acre-feet)
- Area = area of aquifer (acre)
- Water Level = groundwater elevation (feet above mean sea level)
- Top = elevation of aquifer top (feet above mean sea level)
- Bottom = elevation of aquifer bottom (feet above mean sea level)
- S_v = specific yield (no units)
- S_s = specific storage (1/feet)
- S = storativity or storage coefficient (no units)

As presented in the equations, calculation of the total storage requires data such as aquifer top, aquifer bottom, aquifer storativity (for confined conditions), aquifer specific yield (for unconfined conditions), and water level. If a groundwater availability model is available, then this information is extracted from the input and output files of the model on a cell-by-cell basis. If an aquifer is simulated as confined, then the specific yield is not included in the model input file and this value is estimated using other resources and documentation. A FORTRAN-90 program was developed and used to expedite the calculation. This approach was used for the total storage calculation of the Trinity, Edwards (Balcones Fault Zone), Woodbine, and Nacatoch aquifers.

For an aquifer without a groundwater availability model, the published geologic and hydrologic data were interpreted using SURFER™ or Esri® ArcGIS™ spatial analysis tool to develop the input data for the storage calculation. This approach was used for the total storage calculation of the Hickory, Ellenburger-San Saba, Marble Falls, Blossom, and Brazos River Alluvium aquifers.

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014 Page 6 of 41

After calculating the total aquifer storage, the total recoverable storage for the aquifer was calculated as the product of the total aquifer storage and an estimated factor ranging from 25 percent to 75 percent.

PARAMETERS AND ASSUMPTIONS:

HICKORY AQUIFER

- The Hickory Aquifer within Groundwater Management Area 8 is under unconfined conditions in outcrop and confined conditions in the subcrop areas.
- The water levels from the TWDB Groundwater Database (2013) were used to create the water level grid using Surfer® software.
- For the outcrop area, the base of the Hickory Aquifer from the Source Water Assessment Project (SWAP) data (United States Geological Survey, 2002b) was used to create the grid file using Surfer® software.
- For the subcrop area, the top and bottom of the Hickory Aquifer were from Standen and others (2007).
- The aquifer top and bottom averages for each county were calculated using zonal statistics from Esri® ArcGIS™ 10.1.
- The storage coefficient of the aquifer was estimated to be 1 X 10⁻⁵ which is within the range presented in Bluntzer (1992).
- The specific yield of the aquifer was estimated to be 0.03, based on porosity measurements presented in Bluntzer (1992).

ELLENBURGER-SAN SABA AQUIFER

- The Ellenburger-San Saba Aquifer within Groundwater Management Area 8 is under unconfined conditions in outcrop and confined conditions in the subcrop areas.
- The water levels from the TWDB Groundwater Database (2013) were used to create the water level grid using Surfer® software.
- For the outcrop area, the base of the Ellenburger-San Saba Aquifer from the Source Water Assessment Project (SWAP) data (United States Geological Survey, 2002a) was used to create the grid file using Surfer® software.

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 7 of 41

- For the subcrop area, the top and bottom elevations of the Ellenburger-San Saba Aquifer were from Standen and others (2007).
- The aquifer top and bottom averages for each county were calculated using zonal statistics from Esri® ArcGIS™ 10.1.
- The storage coefficient of the aquifer was assigned the value of 0.0022 (Bluntzer, 1992).
- The specific yield of the aquifer was estimated to be 0.03, based on porosity measurements presented in Bluntzer (1992).

MARBLE FALLS AQUIFER

- The Marble Falls Aquifer within Groundwater Management Area 8 is assumed to be under unconfined conditions.
- The average saturated thickness was estimated to be 80 feet based on available data (Texas Water Development Board, 2013; Texas Department of Licensing and Regulation, 2013).
- Like other carbonate rocks in the region studied by Bluntzer (1992), the specific yield for the Marble Falls Aquifer was estimated to be 0.03.

TRINITY AQUIFER

- Version 1.01 of the groundwater availability model for the northern portion of the Trinity and Woodbine aquifers (R.W. Harden & Associates, Inc. and others, 2004) was used to estimate the total recoverable storage for the Trinity Aquifer.
- This groundwater availability model includes seven layers which represent the Woodbine Aquifer (Layer 1), the Fredericksburg/Washita groups confining unit (Layer 2), the Paluxy Formation (Layer 3), the Glen Rose Formation confining unit (Layer 4), the Hensell Formation (Layer 5), the Pearsall/Cow Creek/Hammett/Sligo formations confining unit (Layer 6), and Hosston Formation (Layer 7). In some parts of the study area various combinations of the layers represent the Antlers Formation.
- Model layers 3, 4, 5, 6, and 7 were used to calculate the total estimated recoverable storage for the Trinity Aquifer.

EDWARDS (BALCONES FAULT ZONE) AQUIFER

- Version 1.01 of the groundwater availability model for the northern segment of the Edwards (Balcones Fault Zone) Aquifer (Jones, 2003) was used to estimate the total recoverable storage for the Edwards (Balcones Fault Zone) Aquifer.
- This groundwater availability model includes one layer which represents the Edwards (Balcones Fault Zone) Aquifer.

WOODBINE AQUIFER

- Version 1.01 of the groundwater availability model for the northern portion of the Trinity and Woodbine aquifers (R.W. Harden & Associates, Inc. and others, 2004) was used to estimate the total recoverable storage for the Woodbine Aquifer.
- This groundwater availability model includes seven layers which represent Woodbine Aquifer (Layer 1), the Fredericksburg/Washita groups confining unit (Layer 2), the Paluxy Formation (Layer 3), the Glen Rose Formation confining unit (Layer 4), the Hensell Formation (Layer 5), the Pearsall/Cow Creek/Hammett/Sligo formations confining unit (Layer 6), and Hosston Formation (Layer 7). In some parts of the study area various combinations of the layers represent the Antlers Formation.
- Model layer 1 was used to calculate the total estimated recoverable storage for the Woodbine Aquifer.

NACATOCH AQUIFER

- Version 1.01 of the groundwater availability model for the Nacatoch Aquifer (Beach and others, 2009) was used to estimate the total recoverable storage for the Nacatoch Aquifer.
- This groundwater availability model includes two layers which represent the Midway, alluvium and terrace deposits (Layer 1) and the Nacatoch Aquifer (Layer 2).
- Model layer 2 was used to calculate the total estimated recoverable storage for the Nacatoch Aquifer.

BLOSSOM AQUIFER

- The aquifer top and bottom elevations were based on interpretations from McLaurin (1988) and modified using spatial analysis of data from the United States Geological Survey digital elevation model (DEM), the Geologic Atlas of Texas, and the top of the Woodbine Formation as interpreted by R.W. Harden & Associates, Inc. and others (2004).
- Water elevation data were obtained from TWDB groundwater database downloads
 http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp in July 2013. To
 increase the number of control points used to interpret the average water level,
 data were selected from winter months between 2005 and 2010. Stream channel
 elevations were also used to further refine and add control points to the average
 water level interpretations.
- The spatially distributed saturated aquifer thickness and water level depth above the confined portion of the aquifer were calculated using the spatially interpreted top and bottom of the aquifer and the average 2005 to 2010 winter water level.
- The storativity values ranging from 0.000001 to 0.000112 and a specific yield value
 0.2 were obtained from the Source-Water Assessment Program Decision Support
 System (SWAP-DSS) database (Ulery and Others, 2011).
- The total estimated recoverable storage for each county were then calculated using spatial analysis tools within Esri® ArcGIS™ 10.2 software.

BRAZOS RIVER ALLUVIUM AQUIFER

- The Brazos River Alluvium Aquifer is under water table or unconfined conditions in most places (George and others, 2011).
- The thickness of the Brazos River Alluvium Aquifer was from data presented in Shah and Houston (2007).
- Water depth data were from TWDB groundwater database downloads
 http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp in July 2013. All
 available water depth data were used to calculate the average.
- The aquifer thickness averages for each county were then calculated using zonal statistics from Esri® ArcGIS™ 10.1.

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 10 of 41

- Average saturated aquifer thickness was then calculated using the average aquifer thickness subtracting the average water depth.
- The specific yield value of the aquifer was assigned a value of 0.15 according to Cronin and Wilson (1967).

RESULTS:

HICKORY AQUIFER

Figure 2 shows the official boundary of the Hickory Aquifer in Groundwater Management Area 8. Table 1 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. The total estimated recoverable storage for the Hickory Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 2.

ELLENBURGER-SAN SABA AQUIFER

Figure 3 shows the official boundary of the Ellenburger-San Saba Aquifer in Groundwater Management Area 8. Table 3 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. The total estimated recoverable storage for the Ellenburger-San Saba Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 4.

MARBLE FALLS AQUIFER

Figure 4 shows the official boundary of the Marble Falls Aquifer in Groundwater Management Area 8. Table 5 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. The total estimated recoverable storage for the Marble Falls Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 6.

TRINITY AQUIFER

Figure 5 shows the official boundary of the Trinity Aquifer and the active MODFLOW model cells to represent the aquifer. Table 7 represents the total estimated recoverable storage for the official aquifer in each county located in Groundwater Management Area 8. Figure 6 shows the

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 11 of 41

groundwater conservation districts associated with the Trinity Aquifer in Groundwater Management Area 8. The total estimated recoverable storage for the Trinity Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 8.

EDWARDS (BALCONES FAULT ZONE) AQUIFER

Figure 7 shows the official boundary of the Edwards (Balcones Fault Zone) Aquifer and the active MODFLOW model cells to represent the portion of the aquifer in Groundwater Management Area 8. Table 9 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. Figure 8 shows the groundwater conservation district associated with the Edwards (Balcones Fault Zone) Aquifer in Groundwater Management Area 8. The total estimated recoverable storage for the aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 10.

WOODBINE AQUIFER

Figure 9 shows the official boundary of the Woodbine Aquifer boundary and the active MODFLOW model cells to represent the aquifer in Groundwater Management Area 8. Table 11 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. Figure 10 shows the groundwater conservation districts associated with the Woodbine Aquifer in Groundwater Management Area 8. The total estimated recoverable storage for the Woodbine Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 12.

NACATOCH AQUIFER

Figure 11 shows the official boundary of the Nacatoch Aquifer and the active MODFLOW model cells to represent the aquifer in Groundwater Management Area 8. Table 13 represents the total estimated recoverable storage for the official aquifer in each county located in Groundwater Management Area 8. Figure 12 shows the groundwater conservation district associated with the Nacatoch Aquifer in Groundwater Management Area 8. The total estimated recoverable storage for the Nacatoch Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 14.

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 12 of 41

BLOSSOM AQUIFER

Figure 13 shows the official boundary of the Blossom Aquifer located in Groundwater Management Area 8. Table 15 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. The total estimated recoverable storage for the aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 16.

BRAZOS RIVER ALLUVIUM AQUIFER

Figure 14 shows the official boundary of the Brazos River Alluvium Aquifer in Groundwater Management Area 8. Table 17 represents the total estimated recoverable storage for the aquifer in each county located in Groundwater Management Area 8. The total estimated recoverable storage for the Brazos River Alluvium Aquifer by groundwater conservation district in Groundwater Management Area 8 is presented in Table 18.

LIMITATIONS

The groundwater models used in completing this analysis are the best available scientific tools that can be used to meet the stated objective(s). To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 13 of 41

representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

REFERENCES:

- Beach, J.A., Huang, Y., Symank, L., Ashworth, J.B., Davidson, T., Vreugdenhil, A.M., Deeds, N.E., 2009. Nacatoch Aquifer Groundwater Availability Model.

 http://www.twdb.texas.gov/groundwater/models/gam/nctc/NCTC_Model_Report.pdf.
- Bluntzer, R.L., 1992, Evaluation of ground-water resources of the Paleozoic and Cretaceous aquifers in the Hill Country of Central Texas: Texas Water Development Board Report 339, 130 p.
- Cronin, J.G., and Wilson, C.A., 1967, Ground water in the flood-plain alluvium of the Brazos River, Whitney Dam to vicinity of Richmond, Texas, Texas Water Development Report 41, 206p.
- George, P.G., Mace, R.E., and Petrossian, R., 2011, Aquifers of Texas: Texas Water Development Board Report 380, 172 p.
- Jones, I.C., 2003. Groundwater Availability Modeling: Northern Segment of the Edwards Aquifer, Texas: Texas Water Development Board Report 358, 83 p.
- McLaurin, C., 1988, Occurrence, Availability, and Chemical Quality of Ground Water in the Blossom Sand Aquifer: Texas Water Development Board Report 307, 32 p.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., http://www.nap.edu/catalog.php?record_id=11972.
- R.W. Harden & Associates, Inc., Freese & Nichols, Inc., HDR Engineering, Inc., LBG-Guyton Associates, United States Geological Survey, and Dr. Joe Yelderman, Jr., 2004, Northern Trinity / Woodbine Aquifer Groundwater Availability Model: Contract report to the Texas Water Development Board, 192 p., http://www.twdb.texas.gov/groundwater/models/gam/trnt_n/TRNT_N_Model_Report.pdf.
- Shah, S.D., and Houston, N.A., 2007, Geologic and hydrogeologic information for a geodatabase for the Brazos River alluvium aquifer, Bosque County to Fort Bend County, Texas (version 3): U.S. Geological Survey Open-File Report 2007-1031, 10 p.
- Standen, A.R., Ruggiero, R., Ashworth, J., Tybor, P. and Roeling, B., 2007, Llano Uplift Structure and Stratigraphy, TWDB Contracted Report, 0604830614, 78 p.
- Texas Department of Licensing and Regulation, 2013, Texas Well Record Submission and Retrieval System: Texas Department of Licensing and Regulation, Water Well and Pump Installers program.

- GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
 Page 15 of 41
- Texas Water Development Board, 2013, Groundwater Database: Texas Water Development Board, Water Science and Conservation Division.
- Ulery, R.L., Meyer, J.E., Andren, R.W., and Newson, J.K., 2011, Source-water susceptibility assessment in Texas—Approach and methodology: U.S. Geological Survey Scientific Investigations Report 2011–5197, 64 p.
- United States Geological Survey, 2002a, Selected Hydrogeologic Datasets for the Ellenburger-San Saba in Texas: Source Water Assessment Project digital data. Open File Report.
- United States Geological Survey, 2002b, Selected Hydrogeologic Datasets for the Hickory in Texas: Source Water Assessment Project digital data. Open File Report.

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 16 of 41

TABLE 1. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Brown	220,000	55,000	165,000
Burnet	6,600,000	1,650,000	4,950,000
Lampasas	2,800,000	700,000	2,100,000
Mills	630,000	157,500	472,500
Travis	33,000	8,250	24,750
Williamson	17,000	4,250	12,750
Total	10,300,000	2,575,000	7,725,000

TABLE 2. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. GROUNDWATER CONSERVATION DISTRICT TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
No GCD	270,000	67,500	202,500
Central Texas GCD	6,600,000	1,650,000	4,950,000
Fox Crossing WD ¹	630,000	157,500	472,500
Saratoga UWCD ²	2,800,000	700,000	2,100,000
Total	10,300,000	2,575,000	7,725,000

¹ WD = Water District

² UWCD = Underground Water Conservation District

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers in Groundwater Management Area 8 January 15, 2014
Page 17 of 41

TABLE 3. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Brown	420,000	105,000	315,000
Burnet	8,100,000	2,025,000	6,075,000
Lampasas	8,500,000	2,125,000	6,375,000
Mills	2,300,000	575,000	1,725,000
Total	19,320,000	4,830,000	14,490,000

TABLE 4. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. GROUNDWATER CONSERVATION DISTRICT TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
No GCD	420,000	105,000	315,000
Central Texas GCD	8,100,000	2,025,000	6,075,000
Fox Crossing WD ³	2,300,000	575,000	1,725,000
Saratoga UWCD⁴	8,500,000	2,125,000	6,375,000
Total	19,320,000	4,830,000	14,490,000

³ WD = Water District

⁴ UWCD = Underground Water Conservation District

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 18 of 41

TABLE 5. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE MARBLE FALLS AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Burnet	38,000	9,500	28,500
Lampasas	39,000	9,750	29,250
Total	77,000	19,250	57,750

TABLE 6. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE MARBLE FALLS AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. GROUNDWATER CONSERVATION DISTRICT TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Central Texas GCD	38,000	9,500	28,500
Saratoga GCD	39,000	9,750	29,250
Total	77,000	19,250	57,750

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 19 of 41

TABLE 7. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE TRINITY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Bell	59,000,000	14,750,000	44,250,000
Bosque	40,000,000	10,000,000	30,000,000
Brown	2,600,000	650,000	1,950,000
Burnet	11,000,000	2,750,000	8,250,000
Callahan	1,800,000	450,000	1,350,000
Collin	88,000,000	22,000,000	66,000,000
Comanche	8,300,000	2,075,000	6,225,000
Cooke	45,000,000	11,250,000	33,750,000
Coryell	34,000,000	8,500,000	25,500,000
Dallas	77,000,000	19,250,000	57,750,000
Delta	11,000,000	2,750,000	8,250,000
Denton	64,000,000	16,000,000	48,000,000
Eastland	1,600,000	400,000	1,200,000
Ellis	78,000,000	19,500,000	58,500,000
Erath	20,000,000	5,000,000	15,000,000
Falls	36,000,000	9,000,000	27,000,000
Fannin	79,000,000	19,750,000	59,250,000
Grayson	63,000,000	15,750,000	47,250,000
Hamilton	22,000,000	5,500,000	16,500,000
Hill	52,000,000	13,000,000	39,000,000
Hood	11,000,000	2,750,000	8,250,000
Hunt	12,000,000	3,000,000	9,000,000
Johnson	35,000,000	8,750,000	26,250,000
Kaufman	9,400,000	2,350,000	7,050,000
		-	•

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 20 of 41

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Lamar	77,000,000	19,250,000	57,750,000
Lampasas	12,000,000	3,000,000	9,000,000
Limestone	11,000,000	2,750,000	8,250,000
McLennan	59,000,000	14,750,000	44,250,000
Milam	22,000,000	5,500,000	16,500,000
Mills	8,500,000	2,125,000	6,375,000
Montague	7,800,000	1,950,000	5,850,000
Navarro	39,000,000	9,750,000	29,250,000
Parker	22,000,000	5,500,000	16,500,000
Red River	44,000,000	11,000,000	33,000,000
Rockwall	4,900,000	1,225,000	3,675,000
Somervell	6,000,000	1,500,000	4,500,000
Tarrant	49,000,000	12,250,000	36,750,000
Taylor	630,000	157,500	472,500
Travis	39,000,000	9,750,000	29,250,000
Williamson	77,000,000	19,250,000	57,750,000
Wise	20,000,000	5,000,000	15,000,000
Total	1,359,530,000	339,882,500	1,019,647,500

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 21 of 41

TABLE 8. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE TRINITY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. THE TOTAL ESTIMATED RECOVERABLE STORAGE VALUES BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR AN AQUIFER MAY NOT BE THE SAME BECAUSE THE NUMBERS HAVE BEEN ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
No GCD	470,000,000	117,500,000	352,500,000
Central Texas GCD	11,000,000	2,750,000	8,250,000
Clearwater UWCD⁵	59,000,000	14,750,000	44,250,000
Fox Crossing Water District	8,500,000	2,125,000	6,375,000
Middle Trinity GCD	100,000,000	25,000,000	75,000,000
North Texas GCD	200,000,000	50,000,000	150,000,000
Northern Trinity GCD	49,000,000	12,250,000	36,750,000
Post Oak Savannah GCD	22,000,000	5,500,000	16,500,000
Prairielands GCD	170,000,000	42,500,000	127,500,000
Red River GCD	140,000,000	35,000,000	105,000,000
Saratoga UWCD	12,000,000	3,000,000	9,000,000
Southern Trinity GCD	59,000,000	14,750,000	44,250,000
Upper Trinity GCD	61,000,000	15,250,000	45,750,000
Total	1,361,500,000	340,375,000	1,021,125,000

⁵ UWCD = Underground Water Conservation District

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 22 of 41

TABLE 9. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Bell	11,000	2,750	8,250
Travis	5,900	1,475	4,425
Williamson	78,000	19,500	58,500
Total	94,900	23,725	71,175

TABLE 10. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. THE TOTAL ESTIMATED RECOVERABLE STORAGE VALUES BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR AN AQUIFER MAY NOT BE THE SAME BECAUSE THE NUMBERS HAVE BEEN ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
No GCD	84,000	21,000	63,000
Clearwater UWCD ⁶	11,000	2,750	8,250
Total	95,000	23,750	71,250

_

⁶ UWCD = Underground Water Conservation District

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 23 of 41

TABLE 11. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE WOODBINE AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Collin	32,000,000	8,000,000	24,000,000
Cooke	1,200,000	300,000	900,000
Dallas	30,000,000	7,500,000	22,500,000
Denton	8,900,000	2,225,000	6,675,000
Ellis	25,000,000	6,250,000	18,750,000
Fannin	39,000,000	9,750,000	29,250,000
Grayson	32,000,000	8,000,000	24,000,000
Hill	6,700,000	1,675,000	5,025,000
Hunt	8,200,000	2,050,000	6,150,000
Johnson	4,500,000	1,125,000	3,375,000
Kaufman	4,700,000	1,175,000	3,525,000
Lamar	21,000,000	5,250,000	15,750,000
McLennan	900,000	225,000	675,000
Navarro	3,400,000	850,000	2,550,000
Red River	4,500,000	1,125,000	3,375,000
Rockwall	46,000	11,500	34,500
Tarrant	5,300,000	1,325,000	3,975,000
Total	227,346,000	56,836,500	170,509,500

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 24 of 41

TABLE 12. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE WOODBINE AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. THE TOTAL ESTIMATED RECOVERABLE STORAGE VALUES BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR AN AQUIFER MAY NOT BE THE SAME BECAUSE THE NUMBERS HAVE BEEN ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Tota Storage (acre-feet)		
No GCD	72,000,000	18,000,000	54,000,000		
North Texas GCD	42,000,000	10,500,000	31,500,000		
Northern Trinity GCD	5,300,000	1,325,000	3,975,000		
Prairielands GCD	36,000,000	9,000,000	27,000,000		
Red River GCD	71,000,000	17,750,000	53,250,000		
Southern Trinity GCD	900,000	225,000	675,000		
Total	227,200,000	56,800,000	170,400,000		

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 25 of 41

TABLE 13. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE NACATOCH AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)	
Bowie	2,100,000	525,000	1,575,000	
Delta	100,000	25,000	75,000	
Ellis	66	17	50	
Franklin	7,300	1,825	5,475	
Hopkins	330,000	82,500	247,500	
Hunt	550,000	137,500	412,500	
Kaufman	120,000	30,000	90,000	
Lamar	12,000	3,000		
Navarro	95,000	23,750	71,250	
Rains	18,000	4,500	13,500	
Red River	580,000	145,000	435,000	
Rockwall	280	70	210	
Total	3,912,646	978,162	2,934,485	

TABLE 14. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE NACATOCH AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. THE TOTAL ESTIMATED RECOVERABLE STORAGE VALUES BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR AN AQUIFER MAY NOT BE THE SAME BECAUSE THE NUMBERS HAVE BEEN ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
No GCD	3,900,000	975,000	2,925,000
Prairielands GCD	66	17	50
Total	3,900,066	975,017	2,925,050

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 26 of 41

TABLE 15. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE BLOSSOM AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Bowie	910,000	227,500	682,500
Lamar	970,000	242,500	727,500
Red River	5,200,000	1,300,000	3,900,000
Total	7,080,000	1,770,000	5,310,000

TABLE 16. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE BLOSSOM AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. GROUNDWATER CONSERVATION DISTRICT TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)		
No GCD	7,080,000	1,770,000	5,310,000		
Total	7,080,000	1,770,000	5,310,000		

GAM Task 13-031: Total Estimated Recoverable Storages For Aquifers In Groundwater Management Area 8 January 15, 2014
Page 27 of 41

TABLE 17. TOTAL ESTIMATED RECOVERABLE STORAGE BY COUNTY FOR THE BRAZOS RIVER ALLUVIUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. COUNTY TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)		
Bosque	9,600	2,400	7,200		
Falls	160,000	40,000	120,000		
Hill	6,600	1,650	4,950		
McLennan	90,000	22,500	67,500		
Milam	8,700	2,175	6,525		
Total	274,900	68,725	206,175		

TABLE 18. TOTAL ESTIMATED RECOVERABLE STORAGE BY GROUNDWATER CONSERVATION DISTRICT FOR THE BRAZOS RIVER ALLUVIUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 8. GROUNDWATER CONSERVATION DISTRICT TOTAL ESTIMATES ARE ROUNDED TO TWO SIGNIFICANT FIGURES.

Groundwater Conservation District (GCD)	nservation Total Storage		75 percent of Tota Storage (acre-feet)		
No GCD	160,000	40,000	120,000		
Middle Trinity GCD	9,600	2,400	7,200		
Post Oak Savannah GCD	8,700	2,175	6,525		
Prairielands GCD	6,600	1,650	4,950		
Southern Trinity GCD	90,000	22,500	67,500		
Total	274,900	68,725	206,175		

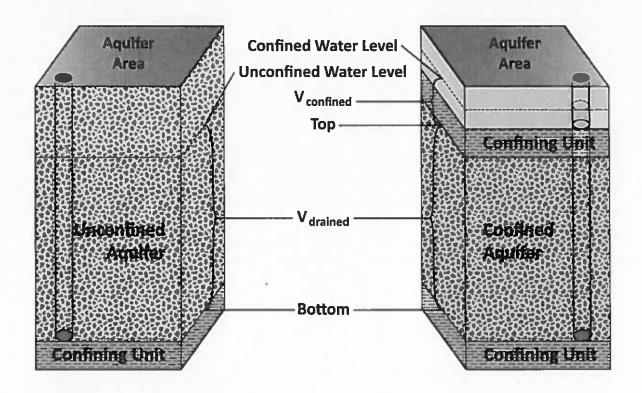


FIGURE 1. SCHEMATIC GRAPH SHOWING THE DIFFERENCE BETWEEN UNCONFINED AND CONFINED AQUIFERS.

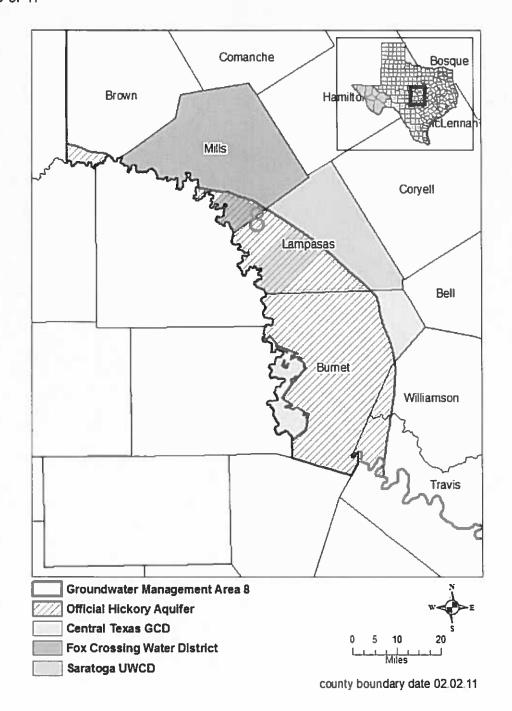


FIGURE 2. EXTENT OF THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

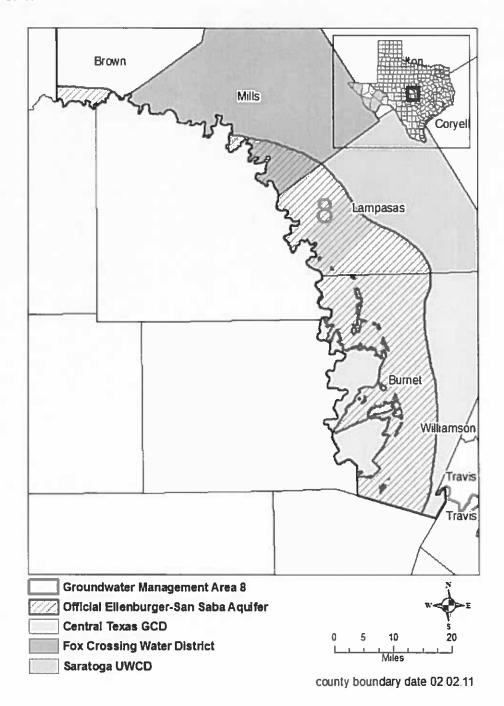


FIGURE 3. EXTENT OF THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA R.

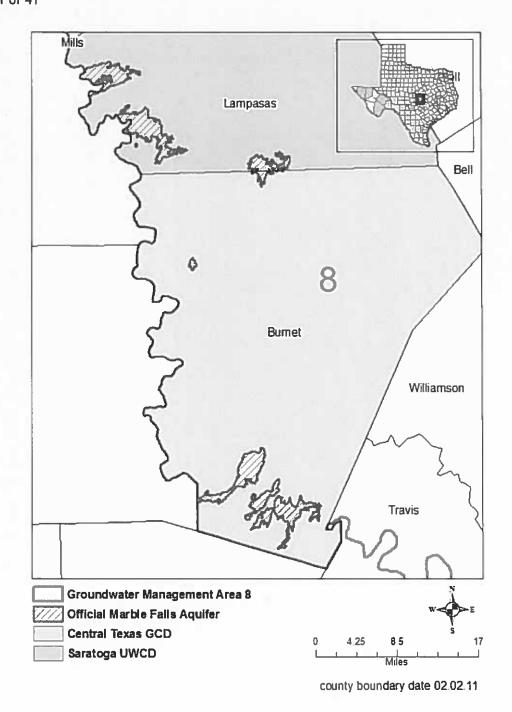


FIGURE 4. EXTENT OF THE MARBLE FALLS AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

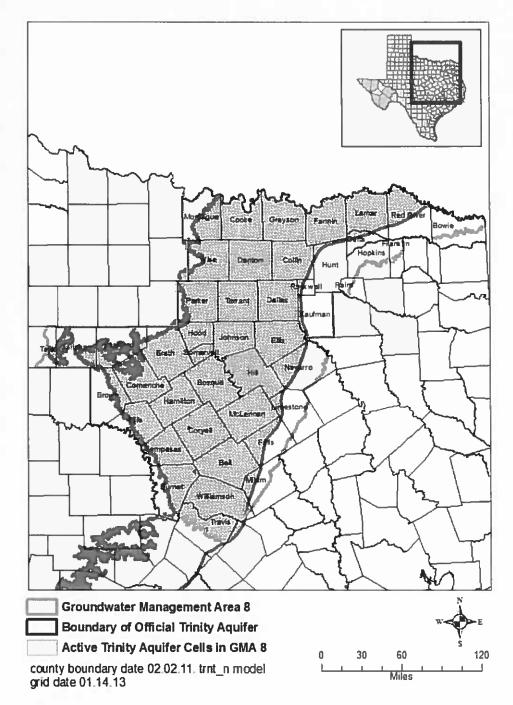


FIGURE 5. EXTENT OF THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTH TRINITY AND WOODBINE AQUIFERS USED TO ESTIMATE TOTAL RECOVERABLE STORAGE FOR THE TRINITY AQUIFER IN GROUNDWATER MANAGEMENT AREA (GMA) 8.

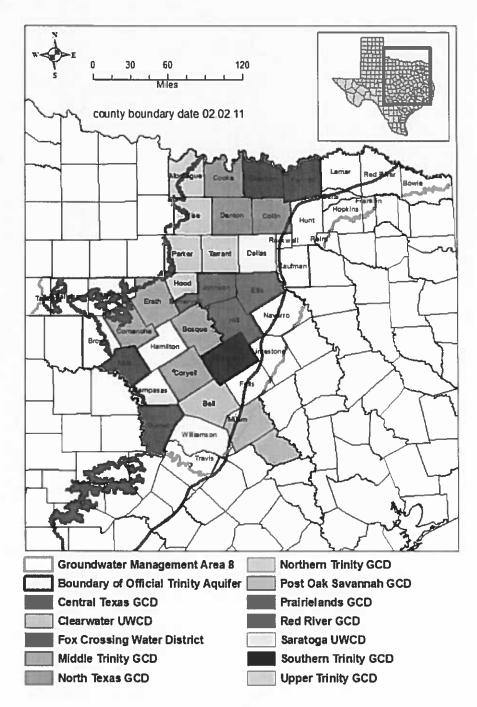


FIGURE 6. GROUNDWATER DISTRICTS ASSOCIATED WITH THE TRINITY AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

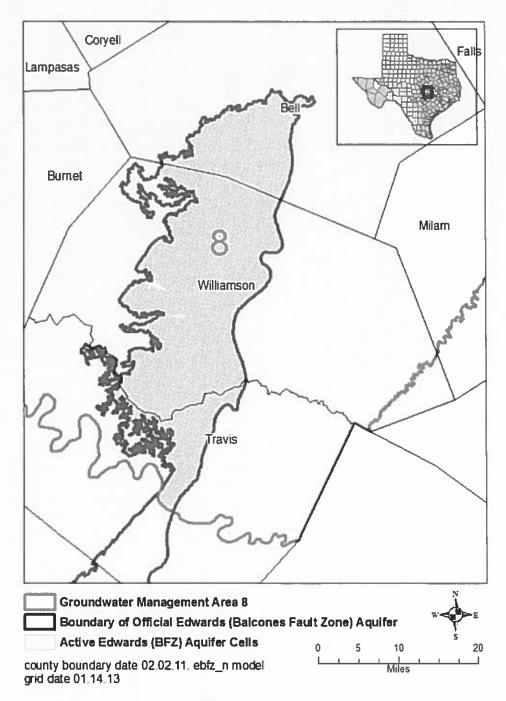


FIGURE 7. EXTENT OF THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN SEGMENT OF EDWARDS (BALCONES FAULT ZONE) AQUIFER USED TO ESTIMATE TOTAL RECOVERABLE STORAGE FOR THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

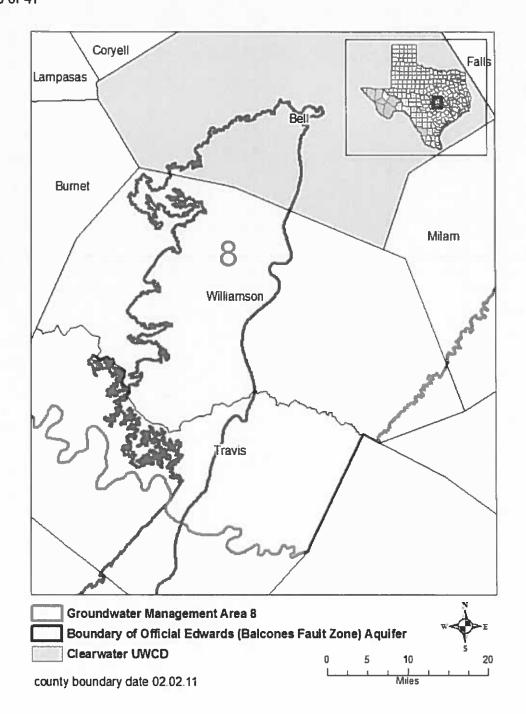


FIGURE 8. GROUNDWATER DISTRICT ASSOCIATED WITH THE EDWARDS (BALCONES FAULT ZONE) AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

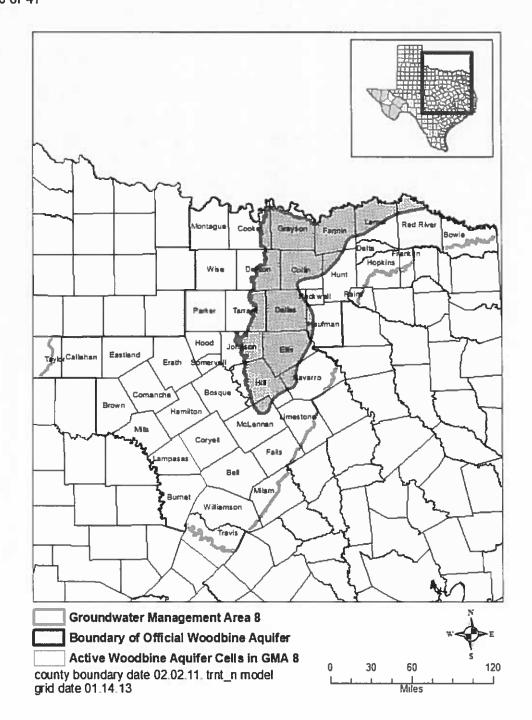


FIGURE 9. EXTENT OF THE GROUNDWATER AVAILABILITY MODEL FOR THE THE NORTHERN PORTION OF THE TRINITY AND WOODBINE AQUIFERS USED TO ESTIMATE TOTAL RECOVERABLE STORAGE FOR THE WOODBINE AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

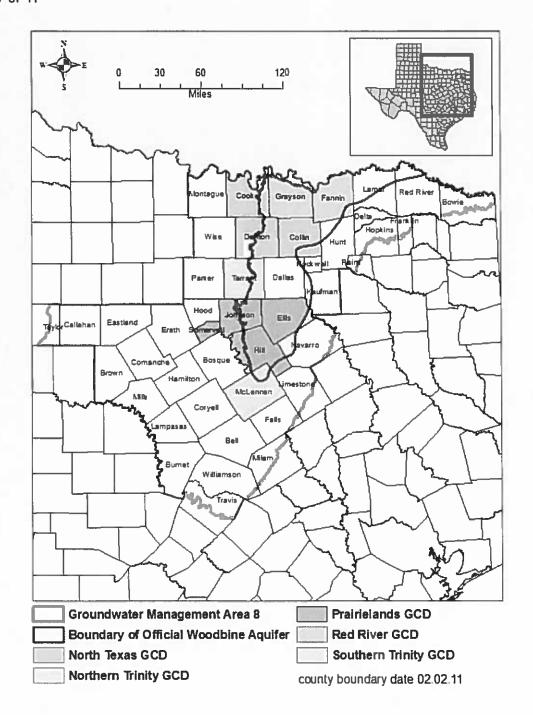


FIGURE 10. GROUNDWATER DISTRICT ASSOCIATED WITH THE WOODBINE AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

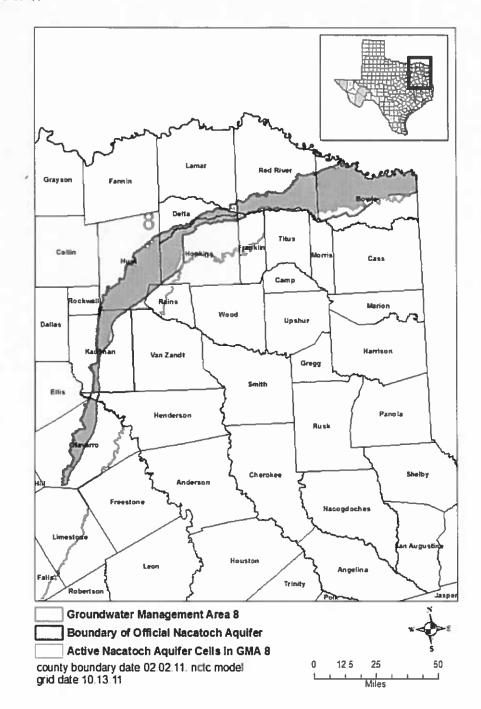


FIGURE 11. EXTENT OF THE GROUNDWATER AVAILABILITY MODEL FOR THE NACATOCH AQUIFER USED TO ESTIMATE TOTAL RECOVERABLE STORAGE FOR THE NACATOCH AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

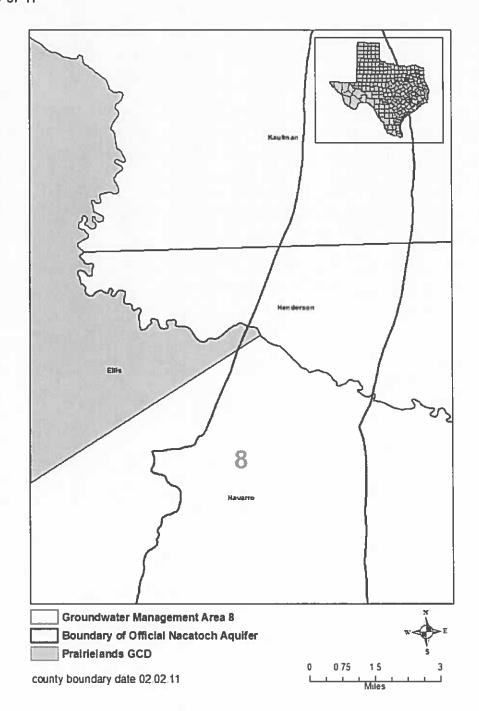


FIGURE 12. GROUNDWATER DISTRICT ASSOCIATED WITH THE NACATOCH AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

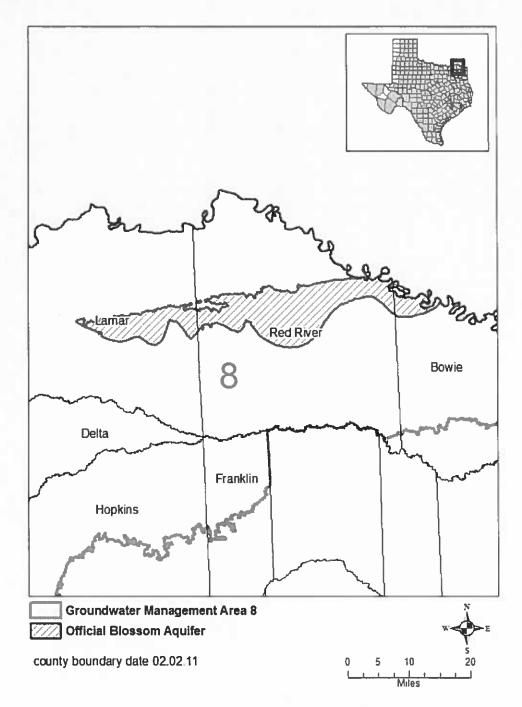


FIGURE 13. EXTENT OF THE BLOSSOM AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.



FIGURE 14. EXTENT OF THE BRAZOS RIVER ALLUVIUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 8.

Appendix D

Estimated Historical Water Use and 2017 State Water Plan Datasets

Estimated Historical Water Use And 2017 State Water Plan Datasets:

Saratoga Underground Water Conservation District

by Stephen Allen
Texas Water Development Board
Groundwater Division
Groundwater Technical Assistance Section
stephen.allen@twdb.texas.gov
(512) 463-7317
January 3, 2020

GROUNDWATER MANAGEMENT PLAN DATA:

This package of water data reports (part 1 of a 2-part package of information) is being provided to groundwater conservation districts to help them meet the requirements for approval of their five-year groundwater management plan. Each report in the package addresses a specific numbered requirement in the Texas Water Development Board's groundwater management plan checklist. The checklist can be viewed and downloaded from this web address:

http://www.twdb.texas.gov/groundwater/docs/GCD/GMPChecklist0113.pdf

The five reports included in this part are:

- 1. Estimated Historical Water Use (checklist item 2)
 - from the TWDB Historical Water Use Survey (WUS)
- 2. Projected Surface Water Supplies (checklist item 6)
- 3. Projected Water Demands (checklist item 7)
- 4. Projected Water Supply Needs (checklist item 8)
- 5. Projected Water Management Strategies (checklist item 9)

from the 2017 Texas State Water Plan (SWP)

Part 2 of the 2-part package is the groundwater availability model (GAM) report for the District (checklist items 3 through 5). The District should have received, or will receive, this report from the Groundwater Availability Modeling Section. Questions about the GAM can be directed to Dr. Shirley Wade, shirley.wade@twdb.texas.gov, (512) 936-0883.

DISCLAIMER:

The data presented in this report represents the most up-to-date WUS and 2017 SWP data available as of 1/3/2020. Although it does not happen frequently, either of these datasets are subject to change pending the availability of more accurate WUS data or an amendment to the 2017 SWP. District personnel must review these datasets and correct any discrepancies in order to ensure approval of their groundwater management plan.

The WUS dataset can be verified at this web address:

http://www.twdb.texas.gov/waterplanning/waterusesurvey/estimates/

The 2017 SWP dataset can be verified by contacting Sabrina Anderson (sabrina.anderson@twdb.texas.gov or 512-936-0886).

For additional questions regarding this data, please contact Stephen Allen (stephen.allen@twdb.texas.gov or 512-463-7317).

Page 2 of 8

Estimated Historical Water Use TWDB Historical Water Use Survey (WUS) Data

Groundwater and surface water historical use estimates are currently unavailable for calendar year 2018. TWDB staff anticipates the calculation and posting of these estimates at a later date.

LAMPASAS COUNTY

All values are in acre-feet

Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2017	GW	114	0	0	0	112	189	415
	SW	3,685	36	46	0	83	353	4,203
2016	GW	124	0	0	0	98	170	392
	SW	3,326	36	37	0	562	317	4,278
2015	GW	129	0	0	0	46	165	340
	SW	3,458	149	37	0	338	306	4,288
2014	GW	137	0	0	0	165	161	463
	SW	3,193	155	24	0	345	298	4,015
2013	GW	164	0	0	0	64	158	386
	SW	3,479	198	55	0	625	293	4,650
2012	GW	146	0	0	0	128	173	447
	SW	3,584	181	46	0	280	320	4,411
2011	GW	116	0	0	0	81	306	503
	SW	3,487	58	25	0	450	567	4,587
2010	GW	107	0	79	0	76	296	558
	SW	2,014	159	97	0	474	551	3,295
2009	GW	256	0	76	0	150	252	734
	SW	2,495	120	85	0	375	466	3,541
2008	GW	414	0	73	0	51	214	752
	SW	2,560	120	102	0	358	397	3,537
2007	GW	320	0	0	0	0	184	504
	SW	2,412	106	0	0	348	342	3,208
2006	GW	436	0	0	0	0	226	662
	SW	2,555	106	0	0	337	420	3,418
2005	GW	396	0	0	0	0	249	645
	SW	1,522	106	0	0	342	462	2,432
2004	GW	379	0	0	0	0	245	624
	SW	2,564	106	0	0	333	496	3,499
2003	GW	377	0	0	0	0	236	613
	SW	955	91	0	0	599	476	2,121
2002	GW	374	0	0	0	0	264	638
	SW	3,565	105	0	0	306	532	4,508
								<u>-</u>

Projected Surface Water Supplies TWDB 2017 State Water Plan Data

LAM	PASAS COUNTY						All value	es are in a	cre-feet
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
G	COPPERAS COVE	BRAZOS	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM	260	339	371	385	397	398
G	IRRIGATION, LAMPASAS	BRAZOS	BRAZOS RUN-OF- RIVER	103	103	103	103	103	103
G	KEMPNER	BRAZOS	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM	195	209	225	240	254	267
G	KEMPNER WSC	BRAZOS	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM	1,189	1,143	1,087	1,041	994	950
G	LAMPASAS	BRAZOS	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM	1,144	1,130	1,116	1,103	1,086	1,068
G	LIVESTOCK, LAMPASAS	BRAZOS	BRAZOS LIVESTOCK LOCAL SUPPLY	783	783	783	783	783	783
G	LIVESTOCK, LAMPASAS	COLORADO	COLORADO LIVESTOCK LOCAL SUPPLY	449	449	449	449	449	449
G	LOMETA	BRAZOS	HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	56	61	64	69	73	76
G	LOMETA	COLORADO	HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	110	119	126	134	142	150
G	MANUFACTURING, LAMPASAS	BRAZOS	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM	137	151	165	178	195	213
G	MANUFACTURING, LAMPASAS	BRAZOS	BRAZOS RUN-OF- RIVER	48	48	48	48	48	48
G	MINING, LAMPASAS	BRAZOS	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM	25	25	25	25	25	25
	Sum of Projected	Surface Wate	r Supplies (acre-feet)	4,499	4,560	4,562	4,558	4,549	4,530

Projected Water Demands TWDB 2017 State Water Plan Data

Please note that the demand numbers presented here include the plumbing code savings found in the Regional and State Water Plans.

LAMI	PASAS COUNTY					All valu	es are in a	cre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
G	COPPERAS COVE	BRAZOS	126	182	222	265	304	340
G	COUNTY-OTHER, LAMPASAS	BRAZOS	251	220	198	174	153	136
G	COUNTY-OTHER, LAMPASAS	COLORADO	66	72	77	82	87	91
G	IRRIGATION, LAMPASAS	BRAZOS	47	47	46	45	45	45
G	IRRIGATION, LAMPASAS	COLORADO	340	335	331	327	325	321
G	KEMPNER	BRAZOS	202	219	231	246	259	272
G	KEMPNER WSC	BRAZOS	1,539	1,669	1,770	1,882	1,987	2,084
G	LAMPASAS	BRAZOS	1,193	1,278	1,343	1,421	1,500	1,573
G	LIVESTOCK, LAMPASAS	BRAZOS	783	783	783	783	783	783
G	LIVESTOCK, LAMPASAS	COLORADO	449	449	449	449	449	449
G	LOMETA	BRAZOS	60	65	68	73	77	80
G	LOMETA	COLORADO	119	128	135	143	151	159
G	MANUFACTURING, LAMPASAS	BRAZOS	185	199	213	226	243	261
G	MINING, LAMPASAS	BRAZOS	148	166	181	196	214	235
G	MINING, LAMPASAS	COLORADO	50	55	60	65	72	78
	Sum of Projecte	ed Water Demands (acre-feet)	5,558	5,867	6,107	6,377	6,649	6,907

Projected Water Supply Needs TWDB 2017 State Water Plan Data

Negative values (in red) reflect a projected water supply need, positive values a surplus.

LAM	PASAS COUNTY					All valu	es are in a	cre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
G	COPPERAS COVE	BRAZOS	134	157	149	120	93	58
G	COUNTY-OTHER, LAMPASAS	BRAZOS	60	85	102	121	137	150
G	COUNTY-OTHER, LAMPASAS	COLORADO	0	0	0	0	0	0
G	IRRIGATION, LAMPASAS	BRAZOS	98	98	99	100	100	100
G	IRRIGATION, LAMPASAS	COLORADO	-218	-213	-209	-205	-203	-199
G	KEMPNER	BRAZOS	-7	-10	-6	-6	-5	-5
G	KEMPNER WSC	BRAZOS	-350	-526	-683	-841	-993	-1,134
G	LAMPASAS	BRAZOS	-49	-148	-227	-318	-414	-505
G	LIVESTOCK, LAMPASAS	BRAZOS	0	0	0	0	0	0
G	LIVESTOCK, LAMPASAS	COLORADO	0	0	0	0	0	0
G	LOMETA	BRAZOS	5	9	9	9	9	9
G	LOMETA	COLORADO	-5	-9	-9	-9	-9	-9
G	MANUFACTURING, LAMPASAS	BRAZOS	0	0	0	0	0	0
G	MINING, LAMPASAS	BRAZOS	-123	-141	-156	-171	-189	-210
G	MINING, LAMPASAS	COLORADO	-50	-55	-60	-65	-72	-78
	Sum of Projected W	ater Supply Needs (acre-feet)	-802	-1,102	-1,350	-1,615	-1,885	-2,140

Projected Water Management Strategies TWDB 2017 State Water Plan Data

LAMPASAS COUNTY

WUG, Basin (RWPG)					All valu	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
IRRIGATION, LAMPASAS, BRAZOS (G)							
IRRIGATION WATER CONSERVATION	DEMAND REDUCTION [LAMPASAS]	1	2	3	3	3	3
TRINITY AQUIFER DEVELOPMENT	TRINITY AQUIFER [LAMPASAS]	3	14	24	25	26	26
IRRIGATION, LAMPASAS, COLORADO (G)	4	16	27	28	29	29
IRRIGATION WATER CONSERVATION	DEMAND REDUCTION [LAMPASAS]	11	17	23	23	23	23
TRINITY AQUIFER DEVELOPMENT	TRINITY AQUIFER [LAMPASAS]	207	196	186	185	184	184
KEMPNER, BRAZOS (G)		218	213	209	208	207	207
MUNICIPAL WATER CONSERVATION (SUBURBAN) - KEMPNER	DEMAND REDUCTION [LAMPASAS]	7	10	6	6	5	5
KEMPNER WSC, BRAZOS (G)		7	10	6	6	5	5
BRA SYSTEM OPERATIONS-LITTLE RIVER	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM [RESERVOIR]	2,434	2,394	2,316	2,360	2,295	2,257
MUNICIPAL WATER CONSERVATION (SUBURBAN) - KEMPNER WSC	DEMAND REDUCTION [LAMPASAS]	60	140	129	126	130	135
LAMPASAS, BRAZOS (G)		2,494	2,534	2,445	2,486	2,425	2,392
BRA SYSTEM OPERATIONS-LITTLE RIVER	BRAZOS RIVER AUTHORITY LITTLE RIVER LAKE/RESERVOIR SYSTEM [RESERVOIR]	22	148	227	318	414	505
MUNICIPAL WATER CONSERVATION (SUBURBAN) - LAMPASAS	DEMAND REDUCTION [LAMPASAS]	27	0	0	0	0	0
LOMETA, BRAZOS (G)		49	148	227	318	414	505
MUNICIPAL WATER CONSERVATION (SUBURBAN) - LOMETA	DEMAND REDUCTION [LAMPASAS]	2	7	9	9	9	10
LOMETA, COLORADO (G)		2	7	9	9	9	10
MUNICIPAL WATER CONSERVATION (SUBURBAN) - LOMETA	DEMAND REDUCTION [LAMPASAS]	5	14	17	18	19	19
(,	[5	14	17	18	19	19

MINING, LAMPASAS, BRAZOS (G)

Page 7 of 8

Estimated Historical Water Use and 2017 State Water Plan Dataset: Saratoga Underground Water Conservation District January 3, 2020

INDUSTRIAL WATER CONSERVATION	DEMAND REDUCTION	Δ	8	13	14	15	17
INDUSTRIAL WATER CONSERVATION	[LAMPASAS]	т	· ·				17
TRINITY AQUIFER DEVELOPMENT	TRINITY AQUIFER [LAMPASAS]	137	133	169	164	206	202
		141	141	182	178	221	219
MINING, LAMPASAS, COLORADO (G)							
INDUSTRIAL WATER CONSERVATION	DEMAND REDUCTION [LAMPASAS]	2	3	4	4	5	5
TRINITY AQUIFER DEVELOPMENT	TRINITY AQUIFER [LAMPASAS]	48	52	56	61	69	73
		50	55	60	65	74	78
Sum of Projected Water Management Strategies (acre-feet)		2.970	3.138	3.182	3.316	3.403	3 464